Estimation of Dynamic Causal Effects

(SW Chapter 13)

A dynamic causal effect is the effect on Y of a change in X over time.
For example:

· The effect of an increase in cigarette taxes on cigarette consumption this year, next year, in 5 years;

· The effect of a change in the Fed Funds rate on inflation, this month, in 6 months, and 1 year;
· The effect of a freeze in Florida on the price of orange juice concentrate in 1 month, 2 months, 3 months…
The Orange Juice Data

(SW Section 13.1)

Data
· Monthly, Jan. 1950 – Dec. 2000 (T = 612)
· Price = price of frozen OJ (a sub-component of the producer price index; US Bureau of Labor Statistics)

· %ChgP = percentage change in price at an annual rate, so %ChgPt = 1200(ln(Pricet)
· FDD = number of freezing degree-days during the month, recorded in Orlando FL 

· Example: If November has 2 days with low temp < 32o, one at 30o and at 25o, then FDDNov = 2 + 7 = 9 

[image: image45.png]FIGURE 13.1 Orange Juice Prices and Florida Weather, 1950-2000
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There have been large month-to-month changes in the price of frozen concentrated orange juice. Many of the large
movements coincide with freezing weather in Orlando, home of the orange groves.





Initial OJ regression
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· Statistically significant positive relation

· More/deeper freezes, price goes up

· Standard errors: not the usual – heteroskedasticity and autocorrelation-consistent (HAC) SE’s – more on this later
· But what is the effect of FDD over time?
Dynamic Causal Effects
(SW Section 13.2)

Example: What is the effect of fertilizer on tomato yield?
An ideal randomized controlled experiment

· Fertilize some plots, not others (random assignment)

· Measure yield over time – over repeated harvests – to estimate causal effect of fertilizer on:

· Yield in year 1 of expt

· Yield in year 2, etc.

· The result (in a large expt) is the causal effect of fertilizer on yield k years later. 

In time series applications, we can’t conduct this ideal randomized controlled experiment:

· We only have one US OJ market ….

· We can’t randomly assign FDD to different replicates of the US OJ market (?)

· We can’t measure the average (across “subjects”) outcome at different times – only one “subject”
· So we can’t estimate the causal effect at different times using the differences estimator

An alternative thought experiment:

· Randomly give the same subject different treatments (FDDt) at different times

· Measure the outcome variable (%ChgPt)

· The “population” of subjects consists of the same subject (OJ market) but at different dates

· If the “different subjects” are drawn from the same distribution – that is, if Yt,Xt are stationary – then the dynamic causal effect can be deduced by OLS regression of Yt on lagged values of Xt.
· This estimator (regression of Yt on Xt and lags of Xt) s called the distributed lag estimator.
Dynamic causal effects and the distributed lag model
The distributed lag model is:

Yt = (0 + (1Xt + … + (pXt–r + ut
· (1 = impact effect of change in X = effect of change in Xt on Yt, holding past Xt constant 
· (2 = 1-period dynamic multiplier = effect of change in Xt–1 on Yt, holding constant Xt, Xt–2, Xt–3,… 
· (3 = 2-period dynamic multiplier (etc.)= effect of change in Xt–2 on Yt, holding constant Xt, Xt–1, Xt–3,… 
· Cumulative dynamic multipliers
· Ex: the 2-period cumulative dynamic multiplier 

= (1 + (2 + (3 (etc.)
Exogeneity in time series regression
Exogeneity (past and present)
X is exogenous if E(ut|Xt,Xt–1,Xt–2,…) = 0.
Strict Exogeneity (past, present, and future)
X is strictly exogenous if E(ut|…,Xt+1,Xt,Xt–1, …) = 0
· Strict exogeneity implies exogeneity

· For now we suppose that X is exogenous – we’ll return (briefly) to the case of strict exogeneity later.

· If X is exogenous then OLS estimates the dynamic causal effect on Y of a change in X.  Specifically,…
Estimation of Dynamic Causal Effects with Exogenous Regressors

(SW Section 13.3)

Yt = (0 + (1Xt + … + (r+1Xt–r + ut
The Distributed Lag Model Assumptions
1. E(ut|Xt,Xt–1,Xt–2,…) = 0 (X is exogenous)

2.  (a) Y and X have stationary distributions;


(b) (Yt,Xt) and (Yt–j,Xt–j) become independent as j 

gets large

3. Y and X have eight nonzero finite moments

4. There is no perfect multicollinearity.

· Assumptions 1 and 4 are familiar

· Assumption 3 is familiar, except for 8 (not four) finite moments – this has to do with HAC estimators

· Assumption 2 is different – before it was (Xi,Yi) are i.i.d. – this now becomes more complicated.
2.  (a) Y and X have stationary distributions;

· If so, the coefficients don’t change within the sample (internal validity);

· and the results can be extrapolated outside the sample (external validity).

· This is the time series counterpart of the “identically distributed” part of i.i.d.

2.
(b) (Yt,Xt) and (Yt–j,Xt–j) become independent as j 

gets large

· Intuitively, this says that we have separate experiments for time periods that are widely separated.

· In cross-sectional data, we assumed that Y and X were i.i.d., a consequence of simple random sampling – this led to the CLT.

· A version of the CLT holds for time series variables that become independent as their temporal separation increases – assumption 2(b) is the time series counterpart of the “independently distributed” part of i.i.d.
Under the Distributed Lag Model Assumptions:

· OLS yields consistent estimators of (1, (2,…,(r (of the dynamic multipliers)
· The sampling distribution of [image: image3.wmf]1

ˆ

b

, etc., is normal

· However, the formula for the variance of this sampling distribution is not the usual one from cross-sectional (i.i.d.) data, because ut is not i.i.d. – it is serially correlated.
· This means that the usual OLS standard errors (usual STATA printout) are wrong

· We need to use, instead, SEs that are robust to autocorrelation as well as to heteroskedasticity…
Heteroskedasticity and Autocorrelation-Consistent (HAC) Standard Errors

(SW Section 13.4)

· When ut is serially correlated, the variance of the sampling distribution of the OLS estimator is different.

· Consequently, we need to use a different formula for the standard errors.

· This is easy to do using STATA and most (but not all) other statistical software.

The math…

Consider the case of no lags:

Yt = (0 + (1Xt + ut
“Recall” that the OLS estimator is:
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   (this is SW App. 4.3)
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where vt = (Xt – 
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so, in large samples,
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What happens with time series data?  Consider T = 2:

var(
[image: image17.wmf]1

1

T

t

t

v

T

=

å

) = var[½(v1+v2)] 

= ¼[var(v1) + var(v2) + 2cov(v1,v2)]

so

var(
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· In i.i.d. (cross-section) data, (1 = 0 so f2 = 1 – which gives the usual formula for var([image: image22.wmf]1
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· In time series data, (1 ( 0, so var([image: image23.wmf]1
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) is not given by the usual formula

· Conventional OLS  SE’s are wrong when ut is serially correlated (STATA printout is wrong).
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The OLS SEs are off by the factor fT (which can be big!)
HAC Standard Errors
· Conventional OLS SEs (heteroskedasticity-robust or not) are wrong when there is autocorrelation

· So, we need a new formula that produces SEs that are robust to autocorrelation as well as heteroskedasticity

We need Heteroskedasticity and Autocorrelation-Consistent (HAC) standard errors

· If we knew the factor fT, we could just make the adjustment.

· But we don’t know fT – it depends on unknown autocorrelations.
· HAC SEs replace fT with an estimator of fT
HAC SEs, ctd.
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The most commonly used estimator of fT is:
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 sometimes called “Newey-West” weights

· 
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· m is called the truncation parameter
· What truncation parameter to use in practice? 

· Use the Goldilocks method

· Or, try m = 0.75T1/3
Example: OJ and HAC estimators in STATA

. gen l1fdd = L1.fdd; 


generate lag #1
. gen l2fdd = L2.fdd; 


generate lag #2
. gen l3fdd = L3.fdd;




.
. gen l4fdd = L4.fdd;




.
. gen l5fdd = L5.fdd;




.
. gen l6fdd = L6.fdd;

. reg dlpoj l1fdd if tin(1950m1,2000m12), r;

NOT HAC SEs
Regression with robust standard errors                 Number of obs =     612

                                                       F(  1,   610) =    3.97

                                                       Prob > F      =  0.0467

                                                       R-squared     =  0.0101

                                                       Root MSE      =  5.0438

------------------------------------------------------------------------------

             |               Robust

       dlpoj |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

       l1fdd |   .1529217   .0767206     1.99   0.047     .0022532    .3035903

       _cons |  -.2097734   .2071122    -1.01   0.312    -.6165128     .196966

------------------------------------------------------------------------------

Example: OJ and HAC estimators in STATA, ctd.

Example: OJ and HAC estimators in STATA, ctd

Now compute Newey-West SEs:

. newey dlpoj l1fdd if tin(1950m1,2000m12), lag(8);  
Regression with Newey-West standard errors          Number of obs  =       612

maximum lag : 8                                     F(  1,   610)  =      3.83

                                                    Prob > F       =    0.0507

------------------------------------------------------------------------------

             |             Newey-West
       dlpoj |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

       l1fdd |   .1529217   .0781195     1.96   0.051     -.000494    .3063375

       _cons |  -.2097734   .2402217    -0.87   0.383    -.6815353    .2619885

------------------------------------------------------------------------------



Uses autocorrelations up to m=8 to compute the SEs



rule-of-thumb: 0.75*(6121/3) = 6.4 ( 8, rounded up a little.
OK, in this case the difference is small, but not always so!
Example: OJ and HAC estimators in STATA, ctd.

. global lfdd6  "fdd l1fdd l2fdd l3fdd l4fdd l5fdd l6fdd";

.  newey dlpoj $lfdd6 if tin(1950m1,2000m12), lag(7);

Regression with Newey-West standard errors          Number of obs  =       612

maximum lag : 7                                     F(  7,   604)  =      3.56

                                                    Prob > F       =    0.0009

------------------------------------------------------------------------------

             |             Newey-West

       dlpoj |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

         fdd |   .4693121   .1359686     3.45   0.001     .2022834    .7363407

       l1fdd |   .1430512   .0837047     1.71   0.088    -.0213364    .3074388

       l2fdd |   .0564234   .0561724     1.00   0.316    -.0538936    .1667404

       l3fdd |   .0722595   .0468776     1.54   0.124    -.0198033    .1643223

       l4fdd |   .0343244   .0295141     1.16   0.245    -.0236383    .0922871

       l5fdd |   .0468222   .0308791     1.52   0.130    -.0138212    .1074657

       l6fdd |   .0481115   .0446404     1.08   0.282    -.0395577    .1357807

       _cons |  -.6505183   .2336986    -2.78   0.006    -1.109479   -.1915578

------------------------------------------------------------------------------

· global lfdd6 defines a string which is all the additional lags

What are the estimated dynamic multipliers (dynamic effects)?
Do I need to use HAC SEs when I estimate an AR or an ADL model?

NO.
· The problem to which HAC SEs are the solution arises when ut is serially correlated

· If ut is serially uncorrelated, then OLS SE’s are fine

· In AR and ADL models, the errors are serially uncorrelated if you have included enough lags of Y
· If you include enough lags of Y, then the error term can’t be predicted using past Y, or equivalently by past u – so u is serially uncorrelated

Estimation of Dynamic Causal Effects with Strictly Exogenous Regressors

(SW Section 13.5)
· X is strictly exogenous if E(ut|…,Xt+1,Xt,Xt–1, …) = 0

· If X is strictly exogenous, there are more efficient ways to estimate dynamic causal effects than by a distributed lag regression.

· Generalized Least Squares (GLS)

· Autoregressive Distributed Lag (ADL)
· But the condition of strict exogeneity is very strong, so this condition is rarely plausible in practice.
· So we won’t cover GLS or ADL estimation of dynamic causal effects (Section 13.5 is optional)
Analysis of the OJ Price Data

(SW Section 13.6)
What is the dynamic causal effect (what are the dynamic multipliers) of a unit increase in FDD on OJ prices?

%ChgPt = (0 + (1FDDt + … + (r+1FDDt–r + ut
· What r to use? 

How about 18? (Goldilocks method)

· What m (Newey-West truncation parameter) to use? 



m = .75(6121/3 = 6.4 ( 7
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These dynamic multipliers were estimated using a distributed lag model.  Should we attempt to obtain more efficient estimates using GLS or an ADL model?

· Is FDD strictly exogenous in the distributed lag regression?

%ChgPt = (0 + (1FDDt + … + (r+1FDDt–r + ut
· OJ commodity traders can’t change the weather.

· So this implies that corr(ut,FDDt+1) = 0, right?
When Can You Estimate Dynamic Causal Effects?

That is, When is Exogeneity Plausible?
 (SW Section 13.7)

In the following examples, 

· is X exogenous?

· is X strictly exogenous?
Examples:

1. Y = OJ prices, X = FDD in Orlando 

2. Y = Australian exports, X = US GDP (effect of US income on demand for Australian exports)

Examples, ctd.

3. Y = EU exports, X = US GDP (effect of US income on demand for EU exports)

4. Y = US rate of inflation, X = percentage change in world oil prices (as set by OPEC) (effect of OPEC oil price increase on inflation)

5. Y = GDP growth, X =Federal Funds rate (the effect of monetary policy on output growth)

6. Y = change in the rate of inflation, X = unemployment rate on inflation (the Phillips curve)

Exogeneity, ctd.

· You must evaluate exogeneity and strict exogeneity on a case by case basis

· Exogeneity is often not plausible in time series data because of simultaneous causality

· Strict exogeneity is rarely plausible in time series data because of feedback.
Estimation of Dynamic Causal Effects: Summary
(SW Section 13.8)
· Dynamic causal effects are measurable in theory using a randomized controlled experiment with repeated measurements over time.

· When X is exogenous, you can estimate dynamic causal effects using a distributed lag regression

· If u is serially correlated, conventional OLS SEs are incorrect; you must use HAC SEs

· To decide whether X is exogenous, think hard!
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Lag number Dynamic Multipliers  Cumulative Multipliers  Cumulative Multipliers ~ Cumulative Multiplers|
0 0.50 0.50 050 051 All regressions were estimated by OLS
0.14) (14 ©.14) (0.15) using monthly data(deseribed in
Appendix 13.1) from January 1950 to
1 0.17 0.67 0.67 070 December 2000, for a toal of T = 612
(0.09 0.14) (0.13) . monthly observations. The dependent
- variable is the monthly percentage change
2 0.07 074 074 0.76 ’ s
in the price of orange juice (ACleP).
000 ©17) o160 18 Regression (1) s the distributed lag
3 007 081 081 084 regression with the monthly number of
0.04) (0.18) (0.18) ©.19) freczing degree days and eighteen of its
lagged values, thatis, FDD, FDD,. ...,
4 0.02 0.84 084 087 EDD, 5, and the reported coefficients are
(0.03) (0.19) (0.19) (0.20) the OLS estimates of the dynamic
multipliers. The cumulative multipliers
5 003 087 087 089 are the cumulative sum of estimated
©.03) ©19) ©.19) ©-20) dynamic multiplicrs. Al regressions
6 090 0.90 091 include an_intercept, which s not
©020) ©21) ©21) reported. Newey-West HAC standard
errors, computed using the truncation
12 0.54 054 054 number given in the final row, are
©.27) (0.2 (0.28) reported in parentheses.
18 0.00 037 037 037
0:02) (0.30) ©31) )
Monthly indicators? No No No
HAC standard error
truncation parameter (m) 7 7 14 7
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The estimated dynamic multipliers show that a freeze leads to an immediate increase in prices. Future price rises are
much smaller than the initial impact. The cumulative multiplier shows that freezes have a persistent effect on the level

of orange juice prices, with prices peaking seven months after the freeze.
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