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The New Econometrics of Structural

Change: Dating Breaks in U.S. Labor
Productivity

Bruce E. Hansen

pplied time series analysis and forecasting is based on the assumption of
stationarity—the constancy of parameters like the mean, variance and
trend over time. But what happens if the parameters change? A particularly
common assertion is that United States labor productivity experienced a “slow-
down” around 1973 and a “speedup” in the second half of the 1990s. While one can
certainly pick groups of years in the 1970s and 1980s where the average annual
productivity growth is lower than it was in the 1960s and the late 1990s, this ad hoc
selection of convenient time periods hardly qualifies as serious analysis.
Structural change is a statement about parameters, which only have meaning
in the context of a model. To focus our discussion, we will discuss structural change
in the simplest dynamic model, the first-order autoregression:

y=otpy te

Eé = o?,

where ¢, is a time series of serially uncorrelated shocks. The parameters are (a, p,
0%). The assumption of stationarity implies that these parameters are constant over
time. We say that a structural break has occurred if at least one of these parameters
has changed at some date—the breakdate—in the sample period. While it may seem
unlikely that a structural break could be immediate and might seem more reason-
able to allow a structural change to take a period of time to take effect, we most
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often focus on the simple case of an immediate structural break for simplicity and
parsimony.

A structural break may affect any or all of the model parameters, and these
cases have different implications. Changes in the autoregressive parameter p reflect
changes in the serial correlation in y. The intercept o controls the mean of y,
through the relationship E(y,) = p = a/(1 - p). Since y, is the growth rate in labor
productivity, changés in p are identical to changes in the trend and are probably
the issue of primary interest. Finally, changes in o® imply changes in the volatility
of labor productivity.

The econometrics of structural change looks for systematic methods to identify
structural breaks. In the past 15 years, the most important contributions to this
literature include the following three innovations: 1) Tests for a structural break of
unknown timing; 2) Estimation of the timing of a structural break; and 3) Tests to
distinguish between a random walk and broken time trends. These three innova-
tions have dramatically altered the face of applied time series econometrics. We
discuss these three topics in turn and use U.S. labor productivity data to illustrate
their applicability.

Testing for Structural Change of Unknown Timing

The classical test for structural change is typically attributed to Chow (1960).
His famous testing procedure splits the sample into two subperiods, estimates the
parameters for each subperiod, and then tests the equality of the two sets of
parameters using a classic F statistic. This test was popular for many years and was
extended to cover most econometric models of interest. For a recent treatment, see
Andrews and Fair (1988).

However, an important limitation of the Chow test is that the breakdate must
be known a priori. A researcher has only two choices: to pick an arbitrary candidate
breakdate or to pick a breakdate based on some known feature of the data. In the
first case, the Chow test may be uninformative, as the true breakdate can be missed.
In the second case, the Chow test can be misleading, as the candidate breakdate is
endogenous—it is correlated with the data—and the test is likely to indicate a break
falsely when none in fact exists. Furthermore, since the results can be highly
sensitive to these arbitrary choices, different researchers can easily reach quite
distinct conclusions— hardly an example of sound scientific practice.

To illustrate this point, let’s take United States labor productivity in the
manufacturing/durables sector. We measure this as the growth rate of the ratio of
the Industrial Production Index for manufacturing/durables to average weekly
labor hours, a monthly time series available from February 1947 to April 2001
(yielding 651 observations).! If we compute a Chow statistic using 1973 as the

! Average weekly hours is the number of employees multiplied by average weekly hours, as measured by
the Bureau of Labor Statistics.
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breakdate, we obtain a value of 3.9.2 The 5 percent critical value from the chi-
square distribution is 6.0, so we fail to find evidence of a structural break. If we
instead compute a Chow statistic using 1975 as the breakdate—just two years
forward—we obtain a value of 7.1. As this exceeds the 5 percent critical value, it
appears to provide evidence of a structural break. But how can we be confident, as
the two similar breakdates give such different answers?

The necessary solution is to treat the breakdate as unknown. This idea—and
solution—goes back to Quandt (1960), who proposed taking the largest Chow
statistic over all possible breakdates.® For illustration, imagine a devilish trickster
who is willing to go to any extreme to prove the existence of a structural break in
labor productivity. This devilish trickster performs every possible Chow test imag-
inable, searching across possible breakdates.* Through this search, this trickster
finds the worst-case Chow statistic, the breakdate where the test is largest. This is
Quandt’s statistic.

One way to see the construction of this statistic is to plot the sequence of Chow
statistics as a function of candidate breakdates. I have done so in Figure 1 for our
labor productivity example. The candidate breakdates are along the x-axis; the
values of the Chow statistics on the y-axis. To compute these Chow statistics for a
particular breakdate, you split the sample at that breakdate and estimate the model
parameters separately on each subsample, as well as their covariance matrices. If the
true parameters are constant, the subsample estimates should be (roughly) con-
stant across candidate breakdates—subject to estimation error. On the other hand,
if there is a structural break, then the subsample estimates will vary systematically
across candidate breakdates, and this will be reflected in the Chow test sequence.

In Figure 1, we can see considerable variation of the Chow test sequence across
candidate breakdates, reaching a high of 20.2 in May 1991. This value—20.2—is the
Quandt statistic.

If the breakdate is known a priori, then the chi-square distribution can be used
to assess statistical significance. We sketch this 5 percent critical value with dashes
in Figure 1. For breakdates where the Chow test sequence lies below this critical
value, the test appears to be “insignificant,” and conversely for breakdates where
the Chow test lies above the critical value.

However, if the breakdate is unknown a priori, then the chi-square critical
values are inappropriate. What critical values should be used instead? For many
years, this question remained unanswered, and the Quandt statistic had no prac-
tical application. In the early 1990s, the problem was solved simultaneously by
several sets of authors, with the most elegant and general statements given by

21 use the Wald form of the statistic computed with a heteroskedasticity-consistent covariance matrix.
% This is the likelihood ratio test under normality.

* Actually, we do not consider literally “all” possible breakdates. We cannot consider breakdates too close
to the beginning or end of the sample, as there are not enough observations to identify the subsample
parameters. The conventional solution is to consider all breakdates in the interior 7 percent to (1 - 7)
percent of the sample, where the trimming parameter 7 is typically between 5 percent and 15 percent.
In the examples presented here, I use 5 percent trimming.
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Figure 1
Testing for Structural Change of Unknown Timing: Chow Test Sequence as a
Function of Breakdate
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Andrews (1993) and Andrews and Ploberger (1994).5 These authors provide tables
of critical values, and Hansen (1997) provides a method to calculate pvalues.
These asymptotic critical values are considerably larger than the comparable
chi-square critical values, depending on the number of parameters in the model
and other factors. In our example (which has two parameters), the Andrews
5 percent critical value is 12.9, just over twice the chi-square critical value. We have
sketched this critical value as well (dotted line) in Figure 1. A visual way to assess
significance is to see if the Chow test sequence breaks above the critical value (as
this is equivalent to the maximum of the sequence exceeding the critical value). We
can see that the maximum (20.2) easily exceeds the Andrews critical value (the
pvalue is 0.0016), so we are easily able to reject the hypothesis of no structural
break.® We are therefore quite confident that this time series has a structural break.
If we find evidence of one structural break, could there be more than one? Bai
and Perron (1998) develop tests for multiple structural changes. Their method is
sequential, starting by testing for a single structural break. If the test rejects the null
hypothesis that there is no structural break, the sample is split in two (based on the
breakdate estimate presented in the next section) and the test is reapplied to each

® Andrews and Ploberger (1994) show that improved power can be obtained by taking exponential
averages of the Chow test sequence.

6 Hansen (2000) shows that Andrews’ critical values are not robust to structural change in the marginal
distribution of the regressors, which is undesirable in tests focusing on conditional relationships. He
shows how to simulate robust critical values on a case-by-case basis. In this example, the robust p-value
(calculated with 10,000 bootstrap replications) is 0.0044, yielding the same conclusion.
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subsample. This sequence continues until each subsample test fails to find evidence
of a break.

The Quandt-Andrews and Andrews-Ploberger family of statistics have essen-
tially replaced the Chow statistic in recent econometric practice. One comprehen-
sive application is Stock and Watson (1996), who apply the tests systematically to 76
monthly time series using both univariate and bivariate regressions. They reject
stability at the 10 percent level for over half of their models.

Another interesting application is Ben-David and Papell (1998), who look for
evidence of “slowdowns” (a decrease in the trend function) in the Summers-Heston
GDP data from 74 countries. They find statistically significant evidence of a slow-
down in 46 countries. In 21 of these cases, the postbreak trend function is actually
negative.

A final example getting considerable recent attention is McConnell and Perez-
Quiros (2000). They test for the stability of the volatility of United States GDP
growth rates and find overwhelming evidence of a substantial decrease in volatility
around 1984.

Estimating the Timing of Structural Change

In many applications, it is useful to know when the structural change occurred.
Treating the date of structural change—the breakdate—as an unknown parameter,
the issues are how to estimate the breakdate and how to obtain confidence intervals
for the breakdate.

An obvious candidate for a breakdate estimate is the date that yields the largest
value of the Chow test sequence (in our labor productivity example, May 1991). It
turns out that this is known to be a good estimate only in one special case—in linear
regressions when the Chow test is constructed with the “homoskedastic” form of the
covariance matrix.”

In regression models, an appropriate method to estimate the parameters—
including the breakdate—is least squares. Operationally, the sample is split at each
possible breakdate, the other parameters estimated by ordinary least squares and
the sum of squared errors calculated and stored. The least squares breakdate
estimate is the date that minimizes the full-sample sum of squared errors (equiva-
lently, minimizes the residual variance).

A theory of least squares estimation has been developed in a sequence of
papers by Jushan Bai, both alone and with coauthors. Bai (1994, 1997a) derives the
asymptotic distribution of the breakdate estimator and shows how to construct
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confidence intervals for the breakdate.® These confidence intervals are easy to
calculate and hence are very useful in applications, as they indicate the degree of
estimation accuracy. Bai, Lumsdaine and Stock (1998) extend this analysis to
multiple time series with simultaneous structural breaks. They show that using
multiple time series improves estimation precision. Bai and Perron (1998) discuss
simultaneous estimation of multiple breakdates.

Chong (1995) and Bai (1997b) show how to estimate multiple breakdates
sequentially. The key insight is that when there are multiple structural breaks, the
sum of squared errors (as a function of the breakdate) can have a local minimum
near each breakdate. Thus, the global minimum can be used as a breakdate
estimator, and the other local minima can be viewed (cautiously) as candidate
breakdate estimators. The sample is then split at the breakdate estimate, and
analysis continues on the subsamples. Bai (1997b) shows that important improve-
ments are obtained by iterative refinements: reestimation of breakdates based on
refined samples.

These methods can be best illustrated through our application to labor pro-
ductivity. In Figure 2, we plot the residual variance (sum of squared errors divided
by sample size) as a function of a single breakdate. The breakdates are on the x-axis
and the residual variance on the y-axis. The sample is split at each breakdate and
the regression parameters estimated separately on each subsample. The sum of
squared errors is calculated (for the entire sample) and the residual variance
plotted. If the true parameters are constant, the subsample estimates (and hence,
sum of squared errors) will vary randomly and erratically across candidate break-
dates. On the other hand, if there is a structural break, then the subsample
estimates will vary systematically across candidate breakdates, and the sum of
squared errors will have a well-defined minimum near the true breakdate.

The plot in Figure 2 is partially erratic, but we can discern three well-defined
minima: a global minimum in January 1982 and two local minima in July 1962 and
September 1993. The visual evidence suggests that two or three structural breaks
are possible in this sample period.

We break the sample at the estimated breakdate (January 1982) and test for
structural breaks on the two subsamples. We find no evidence for a break in the
period [1947, 1982], but find evidence for a break in the period [1982, 2001]. For
this latter period, the residual variance has a strong V shape as a function of the
breakdate, indicating good identification, and the minimum is obtained in Decem-
ber 1994. Now we split the sample in December 1994 and reestimate on the sample
period [1947, 1994]. The Quandet test rejects the hypothesis of parameter constancy
at the 5 percent level, indicating a structural break, and the least squares estimate
of the breakdate is December 1963, with a second local minimum in January 1982.
Now taking the sample [1964, 1994], the Quandt test fails to find evidence for a
structural break. The point estimate of the breakdate again is January 1982. Finally,

® This builds on earlier work by Picard (1985).
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Figure 2
Least Squares Breakdate Estimation: Residual Variance as a Function of Breakdate
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taking the sample [1964, 2001], the Quandt statistic finds evidence of a break with
a breakdate estimate of April 1994.

Based on this evidence, there appears to have been a structural break in this
series in 1994, and possibly breaks in December 1963 and January 1982. The
Bai 90 percent confidence interval for the first breakdate is [1992, 1996], which
is fairly tight. The 90 percent confidence intervals for the other two break-
dates are [1959, 1971] and [1977, 1988], respectively, neither of which is very
precise.

As yet, there have been few rigorous applications of the methodology
described here. An important exception is Bai, Lumsdaine and Stock (1998),
who attempt to date the alleged slowdown of the early 1970s. Using U.S.
quarterly data for 1959 through 1995 on real output, consumption and invest-
ment, they find no evidence of structural change when examining the individual
series with univariate models, but find strong evidence in a joint vector autore-
gression, in which the output, consumption and investment variables are re-
gressed on lagged values of output, consumption and investment. Their esti-
mate of the breakdate is the first quarter of 1969, and their 90 percent
confidence interval puts the breakdate between the second quarter of 1966 and
the fourth quarter of 1971.

An interesting common feature of our breakdate estimates for labor produc-
tivity and the Bai, Lumsdaine and Stock (1998) estimate for real output is that they
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Choosing Between Random Walk and Structural Change

Time series are often usefully described as being composed of a trend and a
cycle. Before the work of Nelson and Plosser (1982), it was commonplace to assume
that the trend was linear. Nelson and Plosser challenged that assumption by
providing evidence that for many widely used aggregate macroeconomic time
series, the trend could be characterized as a random walk. That is, instead of being
a fixed trend to which the time series would revert over the business cycle, the trend
would be moved by random shocks—and then would stay at the new level until
disturbed by another random shock.

While this result prompted many counterchallenges, the most constructive was
mounted by Perron (1989). Perron argued that the movement of the trend could
be explained by a parsimonious single structural break in an otherwise constant
linear trend. This explanation is plausible, since a trend break produces serial
correlation properties that are similar to those of a random walk.

Perron (1989) showed how to test the random walk hypothesis against the
trend-break model. This is achieved by estimating a linear autoregression aug-
mented with dummy interactions to capture the desired broken trend specification.
The hypothesis of a random walk trend implies that the sum of the autoregressive
coefficients equals one (that is, a “unit root” in the autoregressive polynomial), so
this can be easily assessed with a #ratio statistic. The distribution of the #ratio is
non-normal,® but Perron provided a distribution theory and critical values.

Perron (1989) applied this test to the Nelson-Plosser macroeconomic time
series, specifying the breakdate as 1929 for the annual series and 1973 for the
postwar quarterly series. He was able to reject the random walk model for most of
the series at the 5 percent significance level, suggesting that the series were
stationary after accounting for structural change in the trend.

However, Perron’s (1989) analysis was disputed by a collection of papers, most
notably Christiano (1992), Zivot and Andrews (1992), Banerjee, Lumsdaine and
Stock (1992) and even Perron and Vogelsang (1992). These authors argue that it
is inappropriate to specify the breakdate as known, as it is not reasonable to believe
that the choice has been made independently of the data. These authors collec-
tively suggest that an appropriate procedure is to select the breakdate that provides
the most evidence against the random walk hypothesis—the breakdate that pro-
duces the largest #ratio.

This procedure for choosing a breakdate can produce the same numerical
value for the test statistic, as Perron’s choices of 1929 and 1973 were quite judicious.
However, the test is constructed using a different procedure, and hence it has a
different sampling distribution. The critical values for the modified test are much
larger,'® making it harder to reject the null hypothesis of a random walk. Armed

91t is also different from the Dickey-Fuller (1979) distribution.
1% The authors also found that asymptotic critical values should only be used as a crude guide and that
finite-sample bootstrap critical values are much preferred.
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with this new theory, the evidence against the hypothesis of a random walk had
evaporated.

Will longer samples of data settle the debate? Perron (1997) revisited the issue,
extending the sample to 1991:1II and using different methods to select the autore-
gressive lag order. He found slightly stronger evidence against the random walk
model, but the evidence was not conclusive. The key problem is that the trend
functions specified earlier in Perron (1989) do not predict well out of sample. For
the annual series, the trend function severely overpredicts the 1970s and 1980s. For
the quarterly series, it underpredicts for the period 1987-2000. This is consistent
with a random walk trend.

The contributions to this family of tests continue to grow. Of particular note,
Lumsdaine and Papell (1997) allow two breakdates rather than one and find that
the case against the random walk is strengthened. However, the need for two
structural breaks also reduces the distinction between the trend-break and random
walk models.!! '

The Perron (1989) idea has had a large and well-deserved impact on empirical
analysis and has focused attention on the time series properties of the trend. As we
now understand, the distinction between a random walk and a trend break largely
concerns the frequency of permanent shocks to the trend. In a random walk
process, such shocks occur frequently, while in a trend-break process, they occur
infrequently (once or twice in a sample). Future work may attempt to find alter-
native ways to narrow the difference between these models.

Perron’s (1989) idea and its variants have seen many applications. One creative
example of this work is Fernandez (1997). His focus is on the question of whether
changes in money help to forecast output, even after conditioning on lagged
output. An earlier literature had shown that the results depend on whether or not
interest rates are included in the regression and whether a time trend is included
to detrend the series linearly. Fernandez uses tests from Perron (1997) to argue
that output is well represented by a stationary process about a time trend with a
single trend break, and he uses the estimated broken trend function to detrend
output. Fernandez finds that when the sample period is confined to pre-1985, this
produces very robust results; however, he is unable to produce robust results when
data after 1985 is included.

Another application is Papell, Murray and Ghiblawi (2000). These authors are
concerned with hysteresis in unemployment rates in 16 OECD countries. Hysteresis
is the theory that a one-time change in unemployment can have permanent effects;
thus, it is closely related to the idea that trend unemployment can be described as
a random walk. Using the Perron-Vogelsang (1992) tests, the authors are able to
reject the random walk hypothesis for ten of the 16 countries in favor of a one-time

11 In a recent contribution, Saikkonen and Lutkepohl (2000) propose tests with optimal power through
efficient estimation of the model parameters. Their testing methods are related to Elliott, Rothenberg
and Stock (1996) in that they use efficient generalized least squares.
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break in time trend. This finding suggests a very different economic interpretation
about hysteresis.

U.S. Productivity

We now return to our empirical investigation of labor productivity in the U.S.
manufacturing/durables sector. To review, we found strong evidence of a structural
break sometime between 1992 and 1996, and weaker evidence of a structural break
in the 1960s and the early 1980s. What is the nature of these changes in labor
productivity? Our subsample estimates of mean growth rates (in annualized units)
are 3.4 percent for 1947-1964, 2.5 percent for 1964-1982, 4.2 percent for 1982-
1995 and 7.7 percent for 1995-2001. Clearly, the growth rate in the final period is
quite large relative to previous history.

As there are many possible measures of labor productivity, it is natural to ask
if our results are robust to alternative choices. We consider the quarterly labor
productivity index issued by the Bureau of Labor Statistics, which measures output
per hour of all persons for the manufacturing/durables sector. Applying the same
model and methods to this series (1947 through 2000), we again find strong
evidence for a break in the 1990s, with a point estimate of 1997. However, with this
series, there is no evidence of a second break.

To investigate further, we disaggregate the manufacturing/durables sector by
two-digit SIC industry group, as monthly series are available at this level of disag-
gregation for both the industrial production index and weekly labor hours. The ten
industries are the following: Lumber (SIC 24); Furniture (SIC 25); Stone, clay and
glass products (SIC 32); Primary metal industries (SIC 33); Fabricated metal
products (SIC 34); Industrial machinery and equipment (SIC 35); Electronic
equipment (SIC 36); Transportation equipment (SIC 37); Instruments (SIC 38);
and Miscellaneous (SIC 39). ‘

We apply the same empirical methods as described earlier in this paper for the
manufacturing/durables sector. There is evidence of structural change in the
regression function for seven of the ten industry groups, but only two—Industrial
machinery and Electronic equipment—show evidence of a structural break in the
mean growth rate. For the other five industry groups—Furniture, Primary Metals,
Fabricated Metals, Instruments and Miscellaneous—there is a statistically signifi-
cant change in the autoregressive parameter, but not in the mean growth rate. This
means that the response of labor productivity to shocks has changed, but the
long-run impact is unaltered.

As we stated above, the industrial machinery sector has a statistically significant
break in the mean growth rate. The breakdate estimate is February 1992, and the
Bai 90 percent confidence interval is October 1990 to June 1994. The model
implies 2 mean growth rate (in annualized units) of 3.3 percent before 1992 and
7.8 percent after the break. There is no evidence of a second structural break in this
series.
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The other series with a break in the mean growth rate is electronic equipment.
The breakdate estimate is December 1993, and the Bai 90 percent confidence
interval is June 1993 to January 1995. The estimated mean growth rate increased
from 5.3 percent before 1993 to 17.8 percent after 1993.

There is a remarkable coincidence of the breakdates for the manufacturing/
durables sector as a whole and the industrial machinery and electronic equipment
industry groups. Apparently, the structural break in the sector is due to roughly
simultaneous breaks in these two industry groups.

This investigation raises many questions: Is this break permanent or transitory?
Can further disaggregation identify the sources of the productivity break? Is the
timing of the structural break simultaneous across sectors? Why are there no
spillover effects into other industries? Can the labor productivity gain be explained
by increased utilization of other factors? Are these increases unique to the United
States, or have they occurred in other countries as well? I expect that these and
related questions will be exciting avenues for future research.

Conclusion

Structural change is pervasive in economic time series relationships, and it can
be quite perilous to ignore. Inferences about economic relationships can go astray,
forecasts can be inaccurate, and policy recommendations can be misleading or
worse. The new tools developed in the past few years are useful aids in econometric
model specification, analysis and evaluation.

u [ thank the editors—Alan Krueger, Brad De Long, Michael Waldman and Timothy
Taylor—for detailed and helpful comments on a previous draft, which greatly improved the
paper. I also thank John Kennan and Ken West for insightful suggestions about labor
productivity. This research was supported by a grant from the National Science Foundation.
Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author, and they do not necessarily reflect the views of the NSF. The data and
Gauss programs used in this paper are available on the author’s webpage, {http://www.ssc.
wisc.edu/~ bhansen).
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