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Abstract

Estimates of shock persistence based on disaggregate or on aggregate data are frequently

very different. These discrepancies are often attributed to the existence of heterogeneity at

the disaggregate level, which has been argued to cause estimates of shock persistence based on

aggregate data to be significantly larger than those derived from its disaggregate counterpart.

This paper takes a step towards reconciling this apparent disconnect between micro- and

macro-based estimates of shock response. To this end, a fairly general disaggregate model

with heterogeneous dynamics is examined and the values of several measures of persistence

are compared across aggregation levels. It is shown that, while the average of the individual

impulse response functions (IRFs) is identical to the aggregate IRF, averages of other popular

persistence measures, such as the sum of the autoregressive coefficients (SAC) among others,

tend to be larger the higher the aggregation level. I argue, however, that this should not be

interpreted as evidence in favor of a persistence increase but, rather, as an undesirable property

of these measures. The theoretical results are illustrated with two applications that use U.S.

and European inflation data.
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1. INTRODUCTION

Estimates of the persistence of shocks based on disaggregate data versus those based

on aggregate data are often difficult to reconcile. For instance, one of the conclusions of

the Inflation Persistence Network, created by the European Central Bank with the aim of

analyzing the patterns of European inflation persistence, was that there is clear evidence of

large differences of inflation persistence across sectors and “that measures of the degree of

inflation persistence increase with the level of aggregation. Individual or highly disaggregate

price series are, on average, much less persistent than aggregate ones” (see Angeloni, Au-

cremanne, Ehrmann, Galí, Levin and Smets, 2006, and the references therein).1 A similar

type of tension has also been found in estimates of the persistence of real exchange rates

(Imbs, Mumtaz, Ravn and Rey, 2005), and in estimates of the duration of nominal rigidities

(Imbs, Jondeau and Pelgrin, 2011), among others.

These discrepances are often attributed to a large amount of heterogeneity at the dis-

aggregate level. Two types of arguments have been employed to explain how individual

heterogeneity can create this apparent disconnect between micro- and macro-based esti-

mates. On the one hand, building on the results of Pesaran and Smith (1995), it has been

argued that when the dynamics of the disaggregate variables are heterogeneous, the esti-

mates computed with aggregate data are biased and that the sign of the bias is positive

(Imbs et al., 2005). On the other hand, influenced by the results in Robinson (1978) and

Granger (1980), some authors have suggested that the aggregation of heterogeneous dy-

namic processes is not an innocuous operation and that it may tend to increase overall

shock response (Altissimo et al., 2009 among others).

In contrast, some authors have reported very similar persistence values across aggregation

levels in highly heterogeneous datasets (Crucini and Shintani, 2008, Gadea and Mayoral,

2009 and Mayoral and Gadea, 2011). The conclusions of all these articles are typically drawn

by comparing averages of individual persistence measures with their corresponding values

computed with aggregate data. However, different papers employ different tools to measure

persistence and, therefore, it is not clear whether these findings are related to properties of

the data or whether the use of a particular persistence measure can systematically bias the

conclusions towards a specific direction.

1Similar findings have also been reported for U.S. inflation (Clark, 2006)
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This paper takes a step towards reconciling the apparent disconnet between micro- and

macro-based estimates of shock persistence. To this effect, it examines the relationship

among measures of persistence of aggregate shocks computed at different levels of aggre-

gation. We consider a general model at the disaggregate level and use some of the most

popular measures to establish the comparison; namely, the impulse response function and

other popular scalar measures such as the sum of the autoregressive coefficients, the largest

autoregressive root and the half-life.

Our results demonstrate that not all the measures routinely employed in applications

fare equally well. It is shown that the response to an aggregate shock, as measured by the

impulse response function (IRF) of the aggregate model or by the average of the individual

IRFs, is the same on all horizons with or without individual dynamic heterogeneity. This

implies that, according to the IRF, the aggregation of heterogeneous units does not magnify

the average response to a shock. The intuition of this result is simple: both the aggregate

process and the IRF can be defined as two expectations. Under standard assumptions, the

order of these expectations can be interchanged in such a way that identical results are

obtained if one aggregates first and then computes the IRF or if the IRFs of the individual

processes are obtained first and their average is computed in a second step.

In contrast, other popular persistence measures, such as the sum of the autoregressive

coefficients (SAC), are not invariant to aggregation when individual heterogeneity is allowed

for, being typically larger, the higher the level of aggregation. However, this should be

interpreted as an undesirable property of these measures in this particular context, rather

than as a sign of different average persistence across aggregation levels. The reason is

that the SAC is a nonlinear transformation of the IRF and, therefore, the order in which

expectations are taken matters. A straightforward application of Jensen’s inequality shows

that the average SAC tends to increase systematically with the level of aggregation. Thus,

by relying on the latter measure, one could conclude that the average response to a shock

increases with the level of aggregation when, in fact, a more thorough analysis of the IRF

would suggest the opposite. Similar problems appear when other nonlinear measures, such

as the largest autoregressive root (LAR), are employed for analogous purposes.

To illustrate some of the pitfalls involved in the micro-macro comparisons, two empirical

illustrations are provided, one dealing with the estimation of U.S. inflation persistence across

aggregation levels and the other, with the estimation of the duration of nominal rigidities
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using sectoral and aggregate French inflation.

The structure of this paper is as follows. Section 2 establishes the relation between micro-

and macro-based IRFs. Section 3 considers other persistence measures that are frequently

employed in applications. Section 4 presents two empirical illustrations using French and

U.S. inflation data at different levels of aggregation, and Section 5 concludes. The Appendix

presents other materials not included in the main text.

2. THE RELATION BETWEEN MICRO AND MACRO IRFS UNDER

HETEROGENEITY

For the sake of clarify, this section begins by illustrating the main result of the paper

using a simple model. Then, this result is extended to a more general framework.

Consider the problem of assessing the impact of an aggregate shock when micro data

is available and the different units are heterogeneous. A simple but frequently postulated

model for microeconomic behavior that allows for heterogeneous dynamics is the Random

Coefficients Model. For each individual (or sector of the economy) i it is given by2

yit = aiyit−1 + b
′

ixit + νit, i = 1, ..., N, t = 1, ...T, (1)

νit = ρiut + εit, (2)

where t denotes time, yit and xit are observable variables, ai, bi and ρi are unknown coef-

ficients that are assumed to be particular draws from some random variables a = ā + ηa,

b = b̄+ ηb and ρ = 1+ ηρ, where ηk, for k ∈ {a, b, ρ}, are mutually independent, zero-mean

random variables with variance σ2k, and (ā, b̄) are some constants. The distribution of a

has bounded support in the interval (-1,1]. The innovation νit is the sum of one common

shock, ut, and one idiosincratic, εit. The processes ut and {εit}Ni=1 are orthogonal, zero-mean

martingale difference sequences. If xit is just a constant, then (1) is simply the first-order

autoregressive model.

Suppose now that, at time t, a unitary aggregate shock occurs. For each unit i, the impact

of this shock h periods ahead can be evaluated through the IRF, defined as the difference

between two conditional expectations (see Koops et al., 1996)

IRFi(t, h) = E (yit+h|ut = 1; zit−1)−E (yit+h|ut = 0; zit−1) , (3)

2For some macroeconomic applications see Imbs et al. (2005), Crucini and Shintani (2008) or Mayoral

and Gadea (2011).
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where the operator E(.|.) denotes the best mean squared error predictor and

zit−1 =
(
yit−1, yit−2, ... xit−1, xit−2...

)
′

. Application of this definition to (1) yields

IRFi(t, h) = ρia
h
i , for h ≥ 0. (4)

The average response to this aggregate shock can be computed as the expected value of

(4) over the distribution of units, denoted as IRFdis,

IRFdis (t, h) = EI (IRFi(t, h)) , for h ≥ 0, (5)

where EI(.) denotes expectation across the distribution of units. Assuming that EI
(
ah
)

exists for all h, (5) is given by

IRFdis (t, h) = EI

(
ah
)
, for h ≥ 0. (6)

In a representative agent economy, the relation between the IRF computed from aggregate

data and the average of the individual impulse responses defined in (5) is straightforward.

This is because the individual and the aggregate models share the same dynamics so the

IRFs derived from each model are also the same. When the individuals are heterogeneous,

however, the dynamics of the aggregate process are different from those of the individual

units. Thus, in order to compute the aggregate IRF, it is first necessary to consider the

aggregation of model (1). This problem has been addressed by Lewbel (1994), who followed

the “stochastic” approach to aggregation (Stoker, 1984). The latter author defines an

aggregate function as the expected value over the distribution of agents of the micro relations

(see Stoker, 1984, Definition 2).3

To simplify the aggregation problem, we further assume that the process xit is equal

to 1 for all i and t, and that a is independent of the distribution of (b, νit). In addition,

B = EI (b) is assumed to exist. So,

Yt = B +EI (ayt−1) + ut, (7)

where Yt = EI(yit). As shown by Lewbel (1994), expression (7) can be written as

Yt = B +
∞∑

s=1

AsYt−s + ut, (8)

3 In applications, aggregate data is typically constructed as the average of the individual processes. The

Appendix summarizes the conditions for the holding of a law of large numbers relating the above-mentioned

average with the corresponding expectation.
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for constants A1, A2, ..., defined as As = E (αs), where α1 = a and αs = (αs−1 −As−1) a

for s > 1.

Using (8) it is easy to compute the (aggregate) IRF in a similar way as before,

IRFAG(t, h) = E (Yt+h|ut = 1;Zt−1)−E (Yt+h|ut = 0;Zt−1) , (9)

where Zt−1 = (Yt−1, Yt−2, ...). Application of this definition to (8) yields

IRFAG (t, h) =





IRFAG (t, 0) = 1,
∑h
j=1AjIRFAG (h− j) , if h ≥ 1.

(10)

In order to simplify this expression, notice that the coefficients As can easily be shown

to satisfy the equation

As = ms −
s−1∑

r=1

ms−rAr, (11)

where ms = EI (a
s) . It follows from equation (11) that ms =

∑s−1
r=0mrAs−r. Iterating (10)

from h = 1, it is straightforward to check that

IRFAG (t, 1) = A1 = m1 = EI (a) = IRFdis (t, 1)

IRFAG (t, 2) = A21 +A2 = m2 = EI
(
a2
)
= IRFdis (t, 2)

IRFAG (t, 3) = A1(A
2
1 +A2) +A2A1 +A3 = m3 = EI

(
a3
)
= IRFdis (t, 3)

...

IRFAG(t, h) = mh = EI

(
ah
)
= IRFdis (t, h) . (12)

Equation (12) is interesting since it establishes a link between the micro and macro

response to an aggregate shock: the IRF computed in the aggregate model is just the

expected value of the individual IRFs and, as will be shown below, this is also true in a

more general setting than the one considered above. Thus, the aggregation of heterogeneous

processes like (1) does not amplify the average response to a given shock.4

4The result above does not imply that other properties of the micro processes are invariant to aggrega-

tion. As is well known, the aggregation of short-memory stationary processes may induce long memory or

nonstationary behavior in the aggregate variable (see the Appendix for details). Similarly, if some of the in-

dividual processes are I(1) while the others are strictly stationary, the aggregate will also be an I(1) process.

Nevertheless, even in this case, the above-described relationship among IRFs across different aggregation

levels still applies.
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The intuition behind this result relies on the fact that both the IRF and the aggregate

process are defined as the expected value of some expressions (see (3) and (7)). Thus, under

standard assumptions, the order of the expections can be interchanged in such a way that

identical results are obtained if one aggregates first and then computes the IRF, or if the

IRFs of the individual processes are obtained and their average is computed next.5

This implies that the relation in (12) can also be established in a more general framework

than the one considered above. Consider now a group of AR(p) processes that may present

heterogeneous dynamics

yit = bi + a1iyit−1 + ...+ apiyit−p + νit, (13)

νit = ρiut + εit, (14)

where {aji}
p
j=1, bi, ρi and νit are defined as before. The aggregate model Yt = EI(yit) can

be written as a linear combination of lagged values of Yt where the coefficients are complex

functions of the moments of the individual parameters (see Lewbel (1994) for details).

The following theorem states that the relation between sectoral and aggregate IRFs also

holds for the general AR(p) case.

Theorem 1 Let {yit}Ni=1 be a group of heterogeneous processes defined as in (13) and (14).

Under the previous assumptions it follows that

IRFAG(t, h) = IRFdis(t, h), for h ≥ 0. (15)

The proof of this theorem is a straightforward application of Fubini’s theorem, that allows

to interchange the order of the expectations that define the IRFs and the aggregate process

(see the Appendix).

An interesting consequence of (15) is that estimation of the aggregate IRF can be carried

out using either aggregate or sectoral data. The Appendix includes some Monte Carlo

5 If all the individual processes are stationary and the aggregate process is also so (which is not simply

implied by the stationary of the units, see Zaffaroni 2004 for the relevant conditions), there is an even simpler

way of looking at this result. From the MA representation of the individual processes, yit = (1 + aiL +

a2iL
2 + ...)(ρiut + εt) , one can easily obtain the individual IRF to an aggregate shock, IRFi(t, h) = ahi ρi.

The aggregate process can be computed by taking expectations over the distribution of units, Yt = E(yt) =

(1+E(a)L+E(a2)L2+ ...)ut. It follows that IRFAG(t, h) = E(a
h), which coincides with the average of the

individual IRFs, IRFdis(t, h) = E(a
hρ) = E(ah).
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experiments that estimate the impulse response to an aggregate shock using both types of

data. Two main conclusions stand out. Firstly, they show that good approximations to the

population quantities can be obtained using either type of data and standard estimation

techniques. Secondly, important efficiency gains are obtained when disaggregate data is

employed. This implies that even when the focus of the analysis is exclusively on aggregate

outcomes considering disaggregate information can yield much more efficient estimators.

Finally, it is common practice to apply transformations to the data, typically logs, prior

to modelling them. As pointed out by a referee, this might induce discrepancies between

micro and macro IRF estimates in some cases, for instance, when the individual processes

are modelled in logs but the aggregate series is defined as the log of the average of the

units. Clearly, the log of the average differs from the average of the logs and, therefore,

their associated IRFs will also be different. However, from an empirical perspective, the

resulting discrepancy could be potentially small. In a Monte Carlo experiment, similar to

that reported in Section 2 in the Appendix, this is indeed what is found. In that exercise,

the log of the individual units follow (heterogeneous) AR(1) processes, for different distrib-

utions of the heterogeneous AR parameter (described in Table A1 in the Appendix). These

processes have been aggregated in two ways, Yt and Y
∗

t , defined as Yt =
∑N
i=1 log yit/N and

Y ∗t = log(
∑N
i=1 yit/N). The IRFs associated to Yt and to Y

∗

t and their associated MSE were

very similar in all cases.6 Of course, this should not be taken as a general result since the

choice of data generating process could affect the magnitude of the discrepancies. Further

research is needed to establish this result in a general setting.

3. OTHER PERSISTENCE MEASURES

Since the IRF is an infinite vector of numbers, it is a rather unwieldy measure of persis-

tence. For this reason scalar measures are frequently preferred. This section evaluates the

properties of some of the most popular scalar measures when used to compare persistence

across aggregation levels. In particular, the cumulated impulse response (CIR), the half

life (HL), the sum of the autoregressive coefficients (SAR), and the largest autoregressive

root (LAR) are examined. It is shown that not all of these measures perform equally well.

As will be illustrated in the following section, this is one of the reasons why discrepances

between aggregate and disaggregate measures have been found repeatedly in the literature.

6This experiment is not reported in the Appendix but it is available upon request.
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The cumulated impulse response (CIR) evaluates the total cumulative effect of a shock

over time. Its average value at the micro level can be computed as

CIRdis =
∞∑

h=0

IRFdis (t, h) . (16)

The half life (HL) is usually defined as the largest value of h∗ that verifies IRF (t, h∗−1) ≥

0.5 and IRF (t, h∗+1) <0.5 (see Kilian and Zha, 2002). There are several ways of defining

the average HL based on disaggregate data. One way is to apply the HL definition to IRFdis,

i.e., the disaggregate HL (HLdis) is the largest value of h
∗ that verifies IRFdis(t, h

∗−1) ≥0.5

and IRFdis(t, h
∗ + 1) <0.5. A second way to define it is to compute the HL associated to

each IRFi and, then, compute their average value, HL.

At the aggregate level, the CIR and the HL are defined as CIRAG =
∑
∞

h=0 IRFAG (t, h)

and as the largest value of h∗ such that IRFAG(t, h
∗ − 1) ≥0.5 and IRFAG(t, h

∗ +1) <0.5,

respectively. Clearly, the equality between IRFAG and IRFdis, established in Theorem 1,

implies that CIRdis = CIRAG and HLdis = HLAG. Notice however that, since the HL is

a non-linear function, HL would be in general different from both HLdis and HLAG.
7

In many applications average shock persistence is evaluated using the sum of the autore-

gressive coefficients (SAC) and the largest autoregressive root. Typically, these measures

are computed for each individual time series and, next, averages (or distribution quan-

tiles) are reported. Then, these measures are compared with the SAC or LAR obtained

from aggregate data. See Altissimo et al. (2006), Bilke (2005) or Clark (2006) for some

applications.

The SAC was originally introduced by Andrews and Chen (1994) because of its relation

with the CIR through the expression

SAC = 1−CIR−1, (17)

and so, “different values of the SAC can be interpreted easily in terms of persistence because

they correspond straightforwardly to different values of the CIR” (Andrews and Chen, 1994).

Thus, the SAC is a non linear function of the CIR (and of the IRF). This nonlinearity implies

that taking expectations (aggregating) before or after applying this transformation will yield

7There is not a clear relation between HLdis and HL. Even in the case where the individual processes

are all AR(1), HLdis can be larger or smaller than HL, depending on the distribution of the autoregressive

coefficient.
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different results. To see this, consider the simple model described in (1) . Notice that CIRdis

is given by

CIRdis = 1+EI (a) +EI
(
a2
)
+ ... = EI

(
1

1− a

)
(18)

and recall that CIRdis = CIRAG. On the other hand, SACdis = EI (a) . Since
1
1−a is a

convex function, Jensen’s inequality implies that the macro-based SAC, SACAG, is strictly

larger than the average of the individual SACS, SACdis, because

SACAG = 1−

(
EI

(
1

1− a

))
−1

> 1−

(
1

1−EI (a)

)
−1

= EI (a) = SACdis, (19)

unless there is no heterogeneity, in which case both measures are equal. Notice, however,

that this result does not imply that average persistence increases with the level of aggre-

gation: it only implies that under individual heterogeneity, SACdis is a lower bound of the

CIRdis and therefore, is a poor summary of this measure, since (17) does not hold anymore.

The LAR suffers from similar problems to the SAC. For instance, for the AR(1) model in

(1), the average of the sectoral LARs, LARdis=SACdis = EI (a) . The aggregate value of the

LAR (LARAG) will be, in general, different from this quantity. To illustrate this, consider a

particular distribution for the autoregressive parameter. Assume that a follows a U(0,1) dis-

tribution. In this case, LARdis =SACdis = 0.5. As for the corresponding aggregate values,

notice that the aggregate autoregressive polynomial, A(L), verifies A(L)=M (L)−1 , where

M(L) =
∑
∞

h=0E
(
ah
)
Lh. The moments of the uniform distribution, E

(
aj
)
= (j + 1)−1

are not summable, which implies that M(1)=∞. Therefore, A(1)=0 or, in other words, 1 is

a root of the autoregressive polynominal. Thus, LARAG=1. Also, SACAG = 1−A (1) = 1.

As the former example illustrates, values of the SAC and the LAR can be very different

across aggregation levels, even when the average effect of the aggregate shocks is identical.

An alternative measure of sectoral persistence is employed by Imbs et al. (2005) (IMRR

henceforth), who report very different estimates of (average) persistence of real exchange

rates when computed with sectoral or aggregate data. Gadea and Mayoral (2009) (GM

henceforth) have analyzed in depth the methodology followed in that paper and have shown

that IMRR’s measures of persistence based on sectoral data systematically underestimate

(average) persistence. The source of the bias is precisely the definition of the sectoral impulse

response function used by these authors. Instead of computing the individual impulse

responses and averaging them in order to produce an estimate of the average sectoral impulse

response, they first estimate the mean value of the (heterogeneous) model coefficients in a
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panel of countries and, then, use this value to estimate their ‘average’ impulse response

function, as if the model was one of homogeneous coefficients given by the mean value of

the heterogeneous AR coefficients. As shown in GM, averaging the IRFs may yield very

different results to averaging the AR coefficients and then computing the IRF. In fact,

Jensen’s inequality ensures that, for most empirically relevant cases, the former measure is

always larger than the latter. Using the same data set and the same estimation strategy

as those employed in IMRR’s paper, GM have quantified the size of the bias that affects

IMRR’s measures of sectoral persistence. It turns out that the bias is substantial and that,

once it is corrected, sectoral persistence estimates increase considerably: the classical result

of 3-5 year half-life of PPP deviations is recovered. Moreover, those estimates are largely

compatible with the ones obtained when aggregate real exchange rates are employed, as the

theoretical results in this paper predict.

4. EMPIRICAL ILLUSTRATION

Among the central issues in macroeconomics is the nature of short and long-run inflation

dynamics. After a great deal of research in this area, comparisons of estimates of important

parameters based on disaggregate versus on aggregate inflation often produce a conflicting

picture. Several authors have reported estimates of the degree of inflation persistence that

systematically increase with the level of aggregation (Angeloni et al., 2006). Estimates of

the extent of nominal price rigidity display a similar tension. For instance, Imbs, Jondeau

and Pelgrin (2011, IJP henceforth) have estimated sectoral and aggregate New Keynesian

Phillips curves (NKPCs) and have found that estimates of the duration of nominal rigidities

estimated using aggregate data almost double those obtained with sectoral data.

The purpose of this section is to illustrate some of the pitfalls involved in the above-

mentioned comparisons in light of the results presented in Sections 2 and 3.

4.1. Inflation persistence

Most of the empirical studies that have analyzed the persistence of inflation shocks across

different aggregation levels have relied on (averages of) the SAC and/or the LAR, see Clark

(2006), Altissimo et al. (2006) and the references therein, for examples considering US and

European inflation data, respectively. The general consensus in these papers is that inflation
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persistence increases with the level of aggregation.

This section compares estimates of U.S. inflation persistence computed at different levels

of aggregation. In addition to the SAC and the LAR, cross-sectional averages of the IRFs

are considered as measures of shock response.

A similar data set to Clark (2006) has been employed. Price indexes and nominal ex-

penditures for all components of consumption, as measured in the NIPA accounts, have

been obtained from the webpage of the Bureau of Economic Analysis (BEA). This dataset

permits breakdowns at various levels of aggregation. We focus on core inflation, which

excludes food and energy prices. Then, the aggregate variable, denoted as Level 1, is core

inflation. We also report results for data broken into several levels of disaggregation, each

spanning all the core inflation. The most disaggregate level (that we will refer to as Level

4) contains 109 disaggregate prices. Level 3 and Level 2 aggregate these 109 series into 46

and 11 categories, respectively. See Clark (2006) for details on the construction of these

variables. The data is quarterly and covers the period 1976 to 2002.8

Sectoral inflation is highly heterogeneous. For the series in Level 4, mean inflation over

the period considered ranges from -1.91 to 7.46 with a mean (median) of 3.70 (4.04) and

a standard deviation of 1.5. Individual dispersion also shows important disparities across

series, as shown by the minimum and maximum values (2.25 and 29, respectively). More

importantly, the dynamics of inflation series, as measured by the SAC, also seem to be very

heterogeneous. Values of the SAC (bias-corrected SAC) range from -0.24 (-0.14) to 0.95

(1.00), with a mean of 0.66 (0.77) and a standard deviation of 0.21 (0.18). See the Appendix

for more details.

To compute impulse response functions and other persistence measures, AR(k) processes

have been fitted to the data.9 The order k has been chosen according to the GTS and to

8Clark (2006) analyzed the period 1959-2002. Nevertheless, in order to avoid problems derived from

the existence of structural breaks around the 1973 crisis, which would have a great impact on persistence

estimates (see Perron, 1989), we have preferred to avoid this period by considering only post-crisis data.
9As regards the estimation of aggregate data, difficulties arise because the corresponding models contain

an infinite number of parameters. Berk (1974) has shown that
√
T -consistent and asymptotically normally

distributed estimates can be obtained by approximating the AR(∞) process by an AR(k) one, where k

does not increase too quickly or too slowly (k verifies an upper and a lower bound condition).Thus, the

choice of this parameter is key. Standard selection criteria (AIC or BIC) choose values of k, k̂, that are

too small and this may lead to severe finite sample biases (Ng and Perron, 1995). The general-to-specific

(GTS) approach, however, can be used to produce a data-dependent selection rule such that k verifies the
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the AIC.10 Table I reports several measures of persistence computed at different levels of

aggregation (Levels 1 to 4). The first four rows of Table I present the sum of the first h

values of the IRFs relative to aggregation levels 1 to 4, for h = {4, 8, 12, 16 and 20}, that is,

the cumulated response of inflation from 1 to 5 years after the shock occurs. The bottom

rows of Table I report averages of the SAC and the LAR for the four aggregation levels.

Confidence intervals (CIs) have been computed using bootstrap methods following Kilian

(1998). Figure I, in turn, depicts the estimated IRFs associated with aggregation levels 1

to 4.11

(Table I around here)

In agreement with the theoretical results, Table I shows that impulse responses computed

from aggregate and sectoral data are very close at all the considered horizons, especially

when the GTS selection method is employed. Using the CIs associated with the CIRs

computed in Level 1, it is not possible to reject that the estimates obtained in Level 4 are

identical to those corresponding to Level 1. Notice that the CIs associated with Level 4’s

estimates are strictly included in those of Level 1. As can be seen from Figure I, the four

IRFs present approximately the same values and the same pattern of decay, so they imply

a very similar degree of shock persistence, in line with the results presented in Table I. It

is also remarkable that the GTS performs better than the AIC, as the theory predicts, in

obtaining more homogeneous values across aggregation levels, stressing the importance of

fitting long autoregressions when individual heterogeneity is present.

The values of the SAC and the LAR, however, vary considerably across aggregation levels,

reproducing what has been found in previous studies. Using the GTS method, values of

the SAC range from 0.74 corresponding to Level 4 (with a CI of (0.69, 0.78)), to 0.89 for

Level 1 (with a C.I. of (0.82, 1.05)). Notice that the confidence intervals associated with

these estimates do not even overlap. Identical conclusions can be drawn from estimates of

two bound conditions and the parameters obtained in the AR(k) model are consistent and asymptotically

normal for the parameters of the underlying AR(∞) model (Kuersteiner, 2005).
10The maximum number of lags was set to 20, 16, 12 and 8, for aggregation levels 1 to 4, respectively.

The significance level for applying the general-to-specific criterion was 10%. Small sample-bias corrected

estimates have also been computed but they are not reported since results are qualitatively identical.
11The GTS method has been employed in the calculations. Confidence bands at the 5% significance level

have been obtained using bootstrap and correspond to IRFLevel 4 .
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the LAR or when the AIC is employed to select k.

Therefore, from only looking at LAR and SAC figures, one would conclude that the

response to a shock is higher, the higher the level of aggregation at which it is measured.

However, a more thorough analysis of the evolution of the shock as described by the IRF

suggest the opposite conclusions.

(Figure 1 about here)

4.2. Duration of nominal rigidities

IJP use French data on 16 economic sectors to estimate sectoral NKPCs allowing for

heterogeneity at the sectoral level. The (log) price level of sector j at time t is defined as

pj,t = αjpj,t−1 + (1− αj) p
∗

j,t, j = 1, ...16, (20)

where αj is the probability that a firm in sector j does not adjust its price at t and p∗j,t is

the price that is set when firms are allowed to change their prices. The latter is given by

p∗j,t = ωjp
b
j,t+(1−ωj)p

f
j,t, where p

b
j,t (p

f
j,t) denote the price set by backward (forward) looking

firms (see IJP for details), and ωj is the proportion of backward looking firms in sector j.

Following Galí and Gertler (1999), they derive the following sectoral Phillips curves

πj,t = δ1jπj,t−1 + φ1jhjsj,t + φ2jhjsj,t−1 + εj,t, (21)

where πj,t and sj,t denote sectoral inflation and average real marginal costs, respectively, hj

is a correction term, and the parameters δ1j , φ1j and φ2j are (nonlinear) functions of the

structural parameters ωj and αj (see IJP for details). IJP compare the estimates of the

duration of nominal rigidities obtained in the sectoral specification to those obtained in an

aggregate Phillips curve that does not allow for heterogeneity, similar to that considered by

Galí and Gertler (1999), i.e.,

πt = δ1πt−1 + φ1hst + φ2hst−1 + εt, (22)

where πt and st denote aggregate inflation and marginal costs, respectively. The key para-

meters for the computation of the duration of nominal rigidities are the αjs and, therefore,

the problem has a similar structure to that studied in the previous sections.

IJP find that ’sectoral estimates are in the vicinity of two quarters, as opposed to a little

less than one year in the aggregate’. In addition, they argue that their sectoral estimates
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are consistent with estimates of nominal rigidities based on microeconomic surveys of price

duration, whereas aggregate estimates imply significantly longer nominal rigidities.

IJP’s estimates of sectoral duration are based on the value of α corresponding to the

’representative sector’. To estimate this parameter, denoted by α̂RS , IJP estimate (21) for

j = 1, ..., 16 and average across sectors the reduced-form estimates (δ̂1j, φ̂1j , φ̂2j). The

structural parameters are ’inferred’ on the basis of these averages. Next, the duration of

nominal rigidities is derived from (20) according to the formula
(
1/
(
1− α̂RS

))
. Panel A

in Table 2 summarizes their sectoral results.12 The estimated value of α̂RS equals 0.508

which, according to the above-mentioned formula, implies a duration of nominal rigidities

equal to 2.03 quarters.

Nevertheless, although averages of (δ̂1j , φ̂1j, φ̂2j) provide consistent estimates of their

corresponding population means, IJP’s procedure does not yield consistent estimates of the

means of the structural parameters (αj, ωj), since the relation between the reduced-form

and the structural parameters is highly nonlinear. Thus, it is unclear what α̂RS is actually

estimating.

IJP provide sector by sector calculation of all the relevant parameters and, in particular,

of αj (Tables 2 and 3). Thus, it is possible to obtain a consistent estimator of E(α) , Ê(α),

by averaging the sectoral estimates, α̂j . The average of α̂j , j = 1, ...16, is 0.688 (Panel B

in Table 2).13 Interestingly, this figure is almost identical to the estimate of α obtained by

IJP when aggregate data is employed. The corresponding aggregate value is α̂Agg = 0.684,

(Panel D in Table 2).14 Based on the latter values, IJP provide an (aggregate) estimate of

the duration of nominal rigidities equal to 1/(1-α̂Agg) = 3.17 quarters. If ones uses Ê(α) in

a similar formula, a duration equal to 3.21 quarters is obtained.

However, neither 1/
(
1− αRS

)
nor 1/1− E (α) are appropriate measures of the average

duration of nominal rigidities. The relevant quantity to be estimated is E (1/1− α) (that is,

the CIR as defined in Section 3) since sectoral durations are given by 1/1−αj . As equation

(19) shows, 1/1−E (α) is just a lower bound of the true average of nominal rigidities. The

12 In the following, only figures estimated with ML-SURE are reported. Very similar figures are obtained

using ML.
13Simple averages are employed throughout. Very similar results are obtained if GDP weights are employed

to compute the averages.
14The coincidence of these values does not seem to be by pure luck. IJP also present Monte Carlo

simulations suggesting that the estimated value of α based on aggregate data is very close to E(α) , see

Table 5, Panel C in their paper.
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difference between 1/1−E (α) and E (1/1− α) can be important if some of the individual

series are very persistent, as in this case. The average of 1/1-α̂j , j = 1, ...16 (using the

values of αj in Table 3 in IJP) equals 252 quarters.

The latter estimate has to be taken with caution: the number of sectors is very small so

the influence of a few very persistent ones (4 out of the 16 sectors have a root very close to

1) is very large. However, the fact that 1/4 of the sectors have αjs so close to 1 is by itself

at odds with the existing microeconomic evidence of price durations.15

Thus, as opposed to IJP’s conclusions, sectoral NKPC do not seem to match well with

French inflation data after all. Further research has to be undertaken to check whether

this conclusion can be reversed by considering more disaggregate data at the sectoral level

and/or more flexible representations. In addition, it would be interesting to be able to

compare sectoral estimates with those obtained in an aggregate NKPC that explicitly allows

for heterogeneity at the sectoral level. As mentioned above, aggregate NKPCs as that in

(22) seem to yield estimates of α that are close to E (α). This implies that the estimates

of the durations of nominal rigidities obtained from that specification seem to be close to

1/1-E(α) , which is a lower bound of the durations really implied by these models, unless

there is no hetegeneity at the sectoral level. Further research is also needed to clarify this

last issue.

5. CONCLUSION

This paper examines the relations among shock persistence measures computed at differ-

ent levels of aggregation in a context where individual dynamic heterogeneity may exist. It

is shown that the average of the individual IRFs equals the aggregate IRF at all horizons.

A similar relationship also holds for any scalar measure that is a linear transformation of

the IRF, such as the CIR. However, non-linear transformations, such as the SAC, do not

verify this relationship. In fact, they tend to be larger the higher the level of aggregation

considered. Since these measures are the most employed in applications, it is not surprising

that different average shock behavior has been reported in many empirical papers. Two em-

pirical illustrations, using U.S. and French inflation data at different levels of aggregation,

15According to the microdata collected by Baudry et al (2004), the average duration of nominal rigidities

in France is around 10 months. On the other hand, the duration associated to the ’average’ α, that is,

1/1-E(α) is around 5 months.
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have been provided.
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TABLES AND FIGURES

T���� I. U.S I
����
�
 P���
���
��

IRF� �� �
�����
� A�������
�
 L�����

Level 1 Level 2 Level 3 Level 4
∑h
i=1 IRFLevel 1(h)

∑h
i=1 IRFLevel 2 (h)

∑h
i=1 IRFLevel 3 (h)

∑h
i=1 IRFLevel 4 (h)

GTS AIC GTS AIC GTS AIC GTS AIC

h = 4 1.77
(1.25, 2.28)

2.08
(1.66, 2.52)

2.05
(1.86, 2.28)

1.98
(1.83 2.17)

1.89
(1.78, 2.03)

1.88
(1.76, 2.01)

1.85
(1.75, 1.96)

1.82
(1.73, 1.93)

h = 8 3.06
(1.94, 4.63)

3.70
(2.94, 4.74)

3.28
(2.86, 3.91)

3.08
(2.78, 3.58)

3.07
(2.85, 3.45)

3.04
(2.81, 3.44)

2.97
(2.77, 3.30)

2.94
(2.70, 3.22)

h = 12 4.01
(2.47, 7.27)

4.77
(3.54, 6.55)

4.08
(3.44, 5.23)

3.78
(3.30, 4.60)

3.97
(3.64, 4.72)

3.84
(3.50, 4.65)

3.81
(3.52, 4.48)

3.78
(3.38, 4.30)

h = 16 4.58
(2.54, 9.82)

5.56
(4.04, 8.03)

4.67
(3.84, 6.43)

4.24
(3.70 5.43)

4.70
(4.31, 5.94)

4.48
(4.08, 5.57)

4.46
(4.05, 5.58)

4.44
(3.94, 5.41)

h = 20 4.86
(2.62, 12.28)

6.13
(4.49, 9.44)

5.20
(4.21, 7.78)

4.65
(4.05, 6.30)

5.19
(4.89, 7.19)

4.99
(4.50, 6.72)

5.01
(4.47, 6.67)

4.97
(4.38, 6.48)

SAC �� �
�����
� A�������
�
 L�����

0.89
(0.82, 1.05)

0.87
(0.81, 0.95)

0.82
(0.73, 0.91)

0.80
(0.73, 0.87)

0.79
(0.72, 0.85)

0.77
(0.71, 0.83)

0.74
(0.69, 0.78)

0.72
(0.67, 0.76)

LAR �� �
�����
� A�������
�
 L�����

0.97
(0.95, 1.02)

0.94
(0.90, 0.98)

0.95
(0.93, 0.98)

0.93
(0.91, 0.96)

0.91
(0.90, 0.94)

0.89
(0.87, 0.92)

0.89
(0.87, 0.91)

0.84
(0.82, 0.87)

Notes. Level 1 is aggregate core inflation. Levels 2-4 contain 11, 46 and 109 series, respectively. IRFLevel i :

Impulse response function (IRF) computed as the average of the IRFs of the series in Level i. LAR: Largest

autoregressive root; SAC: sum of autoregressive coefficients. AR(K) models have been fitted to the series

in Levels 1 to 4, where K has been chosen according to the Akaike Information Criterion (AIC) or to the

General-to-Specific (GTS) approach. IRFs, SACs and LARs have been obtained on the bases of these

estimates. 5% confidence intervals have been computed using bootstrap techniques. Small sample bias

corrections as in Kilian (1998) have been performed to compute CIs.

T���� 2. E��
����� �� ��� D ���
�
 �� N��

�� R
�
�
�
��

Sectoral data Aggregate data

Panel A Panel B Panel C Panel D

α̂RS
1

1−α̂RS
Ê(α) 1

1−Ê(α)
̂E(1/1− α) α̂Agg

1
1−α̂Agg

0.508 2.03 0.688 3.21 252 0.684 3.17
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Notes. All calculations are based on the estimates provided by IJP based on ML-SURE. Panels A and D

reproduce their estimates (see Table 5, Panels A and B, respectively, in their paper). Estimates from Panels

B and C are based on the figures provided in Table 3 in IJP’s paper.
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