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Abstract

This Appendix contains materials not included in the main text. More

specifically, it presents the proof of Theorem 1, reports the results of some

Monte Carlo experiments that evaluate the finite sample properties of estima-

tors based on aggregate and disaggregate data, and discusses some issues in

connection with the aggregation of heterogeneous processes.

1. PROOF OF THEOREM 1

This section presents the proof of Theorem 1.

By definition of IRFdis (t, h) ,

IRFdis (t, h) = EI(IRFi,t) = EI (E (yit+h|ut = 1; zit−1)− E (yit+h|ut = 0; zit−1))
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and by Fubini’s theorem (see Theorem 9.4.1. in Rosenthal, 2006),

= E (EI (yit+h)|ut = 1;Zt−1)− E (EI(yit+h)|ut = 0;Zt−1)) (1)

= E (Yt+h|ut = 1;Zt−1)−E (Yt+h|ut = 0;Zt−1)

= IRFAG(t, h).� (2)

2. FINITE SAMPLE PROPERTIES OF IRF ESTIMATORS UNDER

INDIVIDUAL HETEROGENEITY

This section explores whether it is possible to obtain good approximations to the

population relationships established in Section 2 in the main text when the corre-

sponding sample counterparts are employed. In order to do that, we have carried

out two Monte Carlo experiments that estimate the impulse response to an aggre-

gate shock using both aggregate and disaggregate data and estandard estimation

techniques.

The first simulation explores whether the finite-sample properties of estimated IRFs

deteriorate as the degree of heterogeneity of the underlying processes increases (for a

given level of persistence). The second focuses on assessing how efficiency improves

as the degree of desaggregation of the data increases.

In order to isolate the impact of an increase in heterogeneity from an increase

in average persistence, different degrees of heterogeneity have been considered while

keeping the level of persistence constant. To achieve this, the following approach has

been adopted. The data has been generated according to the model:

yit = aiyit−1 + ρiut + εit, i = 1, ...,N, t = 1, ...T, (3)

where T = {100, 400}, N = {100, 200}, ut and εit are i.N (0, 1) and i.N (0, σεi )

random variables, respectively and σεi and ρi are draws from two independent uniform

distributions in the interval (0.5, 1.5). The autoregressive parameter a is distributed
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as a U (ω1, ω2), for different values of (ω1, ω2) . These values determine both the degree

of heterogeneity of the individual units and the level of persistence of the aggregate. In

this exercise, the degree of heterogeneity will be determined by the standard deviation

of a, σa, while the level of persistence will be measured by the cumulated impulse

response up to lag 100, CIR(100).

To select (ω1, ω2), the following approach has been pursued. Firstly, three levels

of persistence, denoted as LP I, II and III, have been considered. These persistence

levels correspond to the case where ai = a for all i (i.e., there is no heterogeneity)

and a = {0.85, 0.90, 0.95}, respectively. Persistence, as measured by the CIR(100),

is equal to

LP I: CIR (100) =
100∑

j=0

0.85j = 6.67.

LP II: CIR (100) =
100∑

j=0

0.9j = 10.

LP III: CIR (100) =

100∑

j=0

0.95j = 19.89.

Secondly, four values of σa have been considered, namely σ∗a = {0, 0.01, 0.05, 0.1}.
Next, the bounds of the uniform distribution (ω1, ω2) are chosen in such a way that

the resulting σa reproduces the values of σ∗a and the resulting set of heterogeneous

processes imply a similar value of the CIR(100) as LP I to LP III. Under heterogeneity,

CIR(100) =
∑100

j=0E (a
j) =

(
1

ω2−ω1

)∑100
j=0

(
ωj+12 − ωj+11

)
/j + 1. Then, the restriction

on the standard deviation implies that (ω2 − ω1) =
√
12σa while the condition on the

CIR allows us to identify unique values for (ω1, ω2) . T���� AI reports these values

for each of the levels of persistence and heterogeneity considered in this experiment.
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T���� AI. D
��
���
�� �� a

a ∼ U (ω1, ω2)

σa= 0.0 σa= 0.01 σa= 0.05 σa= 0.1

CIR(100) ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2

LP I 6.67 0.85 0.85 0.83 0.866 0.7470 0.9202 0.6155 0.9619

LP II 10 0.90 0.90 0.882 0.9166 0.7900 0.9632 0.6455 0.9919

LP III 19.89 0.95 0.95 0.9300 0.9646 0.826 0.992 0.6700 1.00

Notes: This table reports the values of the bounds (ω1, ω2) of the uniform distribution that has

been employed in Tables A2 and A3 to generate the values of a. These bounds depend on the Level

of persistence (LP1 to LP III) as well as on the variance of a, σ∗a={0,0.01,0.05,0.1}.

The aggregate process, Yt, has been computed as the simple average of the y′its

Yt =

∑N

i=i yit
N

. (4)

As regards the estimation of Yt, difficulties arise because it contains an infinite

number of parameters. Berk (1974) and Lewis and Reinsel (1985) have shown that
√
T -consistent and asymptotically normally distributed estimates can be obtained by

approximating the AR(∞) process by an AR(k) model, where k does not increase

too quickly or too slowly.1

The lag length, k, is the key parameter in implementing procedures that approxi-

mate AR(∞)models in applications. Ng and Perron (1995) have argued that standard
selection criteria (the AIC and the BIC) choose values of k, k̂, that are proportional

1More specifically, k should verify an upper bound condition, k3/T → 0, and a lower bound one,

T 1/2
∑
∞

j=k+1 |Aj | → 0 as k, T →∞.
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to log T and, so, do not verify the lower bound condition stated above.2 Kuersteiner

(2005) has shown that the general-to-specific (GTS) approach (Ng and Perron, 1995)

can be used to produce a data-dependent selection rule such that the estimates ob-

tained in the AR(k) model are consistent and asymptotically normal for the para-

meters of the underlying AR(∞) model. Then, the consistency and the asymptotic

normality of aggregate IRF estimates in AR(∞) models follow from an application

of the delta method.

AR(k) processes have been fitted to Yt, where k was chosen according to the AIC

and the GTS. Following Ng and Perron (1995), the maximum value of k, kmax, was

set according to the rule kmax(YT ) ≈ 10∗ (T/100)0.25, which yields kmax = {10, 14}
for T = {100, 400}, respectively. A similar strategy has been followed to fit models

for the individual yits. This time, kmax was set to kmax ≈ (YT )/3.
For each replication r, the estimated disaggregate and aggregate models have been

employed to compute the corresponding IRFs, denoted as ̂IRFdis,r and ̂IRFAG,r,

respectively. ̂IRFdis,r has been obtained as the mean of the individual IRFs while

̂IRFAG,r is the sample analog of (11) in the main text.

Table AII reports the average mean squared error (MSE) of ÎRFdis and ÎRFAG,

which is defined as

MSEdis = R−1
R∑

r=1

(

h−1
h∑

j=0

(
̂IRFdis,r (j)− IRFtrue,r (j)

)2
)

, (5)

and

MSEAG = R−1

R∑

r=1

(

h−1
h∑

j=0

(
̂IRFAG,r (j)− IRFtrue,r (j)

)2
)

, (6)

where R = 1000 is the number of replications, h = 20 is the horizon of the IRF and

2In fact, bias terms arising as a consequence of the asymptotic misspecification of the model

when these criteria are employed are of order T−1/2, considerably more severe than the usual finite

sample biases that are typically of order T−1.
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IRFtrue,r is the true IRF in replication r, given by

IRFtrue,r (j) = N−1
N∑

i=1

aji,r, j = 1, ..., h.

Only values obtained by selecting k using the GTS approach and N = 100 are

reported. Those obtained by using the AIC and N = 200 were similar so they are

omitted for the sake of brevity.

T���� AII. M��� S����� E�, GTS ������
�� ������

σa= 0.0 σa= 0.01 σa= 0.05 σa= 0.1

MSEdis MSEAG MSEdis MSEAG MSEdis MSEAG MSEdis MSEAG

T=100

LP I 0.063 0.234 0.064 0.259 0.061 0.239 0.056 0.210

LP II 0.168 0.461 0.166 0.470 0.153 0.456 0.101 0.328

LP III 0.569 1.091 0.570 1.138 0.303 0.748 0.138 0.432

T=400

LP I 0.013 0.061 0.014 0.061 0.0121 0.057 0.010 0.055

LP II 0.028 0.102 0.028 0.106 0.023 0.095 0.016 0.077

LP III 0.065 0.183 0.067 0.192 0.040 0.141 0.018 0.090

Notes: The disaggregate and aggregate processes have been generated according to (3) and (4),

respectively. The number of disaggregate processes, N, is equal to 100 and the number of replications,

R, is 1000. AR(k) processes have fitted to the data where k has been chosen according to the GTS

approach. MSEdis and MSEAG are defined in (5) and (6), respectively.

Figures A1 to A3 present the average over the number of replications of IRFtrue,

ÎRFdis and ÎRFAG for LP I-III, respectively, for T = 100. Confidence bands at the

5% significance level are also reported. Four graphs are presented in each figure,

corresponding to the different degrees of heterogeneity considered.3 Graphs in the

3For each h, these bands are computed as the (0.250, 0.975) percentiles of the R replications of
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upper left corner correspond to the case where there is no heterogeneity (σa = 0),

while the remaining graphs display estimated IRFs under positive σas.

Several interesting conclusions can be drawn from inspecting Figures A1 to A3 and

Table AII. Firstly, the figures show that the average bias is in general small and fairly

similar for the σa = 0 and the σa > 0 cases and for ÎRFdis and ÎRFAG. Furthermore,

confidence bands do not seem to vary much as σa increases. This suggests that

the existence of individual heterogeneity does not hurt much the properties of the

estimators. Confidence bands are considerably narrower for ÎRFdis than for ÎRFAG,

which implies that the use of disaggregate information can bring about important

efficiency gains in the estimation of aggregate quantities. Similar conclusions are

drawn by analyzing the average MSE: MSEdis is always smaller than MSEAG, even

in the absence of heterogeneity.

Secondly, increasing heterogeneity for a given level of persistence does not affect

much MSEdis unless persistence is high (LP III), in which case MSEdis tends to

decrease as heterogeneity increases. A similar pattern is observed for MSEAG: for

moderate levels of persistence (LP I), increasing σa deteriorates MSEAG. However

the opposite effect is found in more persistent situations. For instance, for LP III

with T = 100, the MSEAG for σa = 0.1 is less than half the MSEAG obtained for

the case of no heterogeneity (σa = 0). This evidence is surprising and at odds with

the common belief that individual heterogeneity hurts the properties of aggregate

estimators.

Thirdly, increasing the level of persistence always increases the MSE. This increase

may be due to the well-known downward bias affecting the OLS estimator of AR

coefficients when persistence is high. Interestingly, the increase tends to be smaller

in the presence of heterogeneity. For instance, for σa = 0 and T = 100, the MSE

of ÎRFdis
(
ÎRFAG

)
increases by a factor of 9 (4.5) when moving from LP I to LP

the IRF(h) .
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III. However, for σa = 0.1, the MSE of ÎRFdis

(
ÎRFAG

)
rises only by a factor of 2.5

(2) from LP I to LP III. Finally, both the bias and the MSE drop considerably when

larger sample sizes are considered.

(Figure A1 about here)

(Figure A2 about here)

(Figure A3 about here)

An interesting conclusion of the previous exercise is that important efficiency gains

are obtained when disaggregate data is employed to estimate the aggregate IRF.

However in applications, highly disaggregate data is sometimes not available. We have

carried out a second experiment to assess how efficiency improves as more disaggregate

data is used. To do that, we have considered a similar DGP as before where N,

the number of individual processes, is set equal to 200. Next, this data has been

aggregated in several steps: Level of aggregation 5 (LAgg 5) contains 100 processes,

each computed as the simple average of two of the original processes. LAgg 4 to 1

have been computed in an analogous way, such that they contain 50, 10, 5 and 1

process, respectively. Thus, LAgg 1 is simply the aggregate process defined in (4) .

Table AIII presents the MSE obtained by estimating these data following a similar

strategy as in the previous exercise. We focus on LP III and consider the same levels

of heterogeneity as before, namely, σa = {0, 0.01, 0.05, 0.1}.
Not surprisingly, the MSE decreases considerably as more disaggregate data is

employed. Comparing the MSE of LAgg 1 with that of LAgg 5 for T = 100, it is seen

that the latter is around 40 to 60% smaller. Interestingly, even when highly aggregate

data is considered, as in LAgg 2, where each of the series is the result of aggregating

40 AR(1) heterogeneous processes, efficiency gains of around 20% are obtained with

respect to LAgg 1. This fact stresses the convenience of using disaggregate data
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whenever is available.

T���� AIII. MSE �� D
������ A������
�� L�����

σa= 0.0 σa= 0.01 σa= 0.05 σa= 0.1

T=100

LAgg 1 (1 process) 1.144 1.071 0.774 0.436

LAgg 2 (5 processes) 0.946 0.948 0.631 0.353

LAgg 3 (10 processes) 0.919 0.883 0.605 0.333

LAgg 4 (50 processes) 0.769 0.738 0.462 0.226

LAgg 5 (100 processes) 0.666 0.639 0.374 0.168

T=400

LAgg 1 (1 process) 0.213 0.173 0.146 0.094

LAgg 2 (5 processes) 0.188 0.159 0.133 0.091

LAgg 3 (10 processes) 0.180 0.152 0.122 0.079

LAgg 4 (50 processes) 0.133 0.111 0.072 0.037

LAgg 5 (100 processes) 0.101 0.084 0.047 0.022

Notes: The disaggregate data has been generated according to (3), LP III and different levels

of sigma. The number of disaggregate processses, N, is equal to 200. LAgg 1 to 5 aggregate the

original data in 1, 5, 10, 50 and 100 series, respectively. The number of replications, R, is 1000.

AR(k) processes have fitted to the data where k has been chosen according to the GTS approach.

The MSE is computed according to (5).

3. AGGREGATION AND THE LAW OF LARGE NUMBERS

Throughout the main text it is assumed that the aggregate model is defined as the

expected value of the individual processes. However, in applications aggregate data,

denoted as ȲNt henceforth, is constructed as a (weighted) average of the individual

data. Hence, ȲNt would approximately follow the aggregate model in (8) in the main
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text if a LLN relating Yt and ȲNt holds. However, in some cases such a LLN might not

hold (Forni and Lippi, 1997, p. 17). Since the applicability of the results obtained in

Section 2 relies on this convergence, it is worth considering this issue in more detail.

For simplicity, we assume that the aggregate data ȲNt is constructed as a simple

average of a large number of individual processes

ȲNt =

∑N

i=1 yit
N

,

where yit is defined as in (1) in the main text, with bi = 0 for all i. ȲNt can be written

as the sum of two terms

ȲNt =
1

N

(
N∑

i=1

εit
(1− aiL)

+
N∑

i=1

ρiut
(1− aiL)

)

, (7)

that will be referred to as the idiosyncratic and common components, respectively.

Then, ȲNt would be a good approximation of the aggregate model derived in Section

3 provided that a LLN applies, such that ȲNt and Yt = EI (yt) are close for large N.

The holding of a LLN relating ȲNt and Yt hinges on whether the limit of ȲNt when

N →∞ is stationary or not. So, before considering the convergence of ȲNt and Yt, the

asymptotic properties of ȲNt as N increases should be reviewed. This issue has been

analyzed by Zaffaroni (2004) and we briefly summarize the results that are relevant

to the problem considered here. The asymptotic behavior of ȲNt critically depends

on the properties of the distribution of a around 1. As shown by Granger (1980), if

the support of a is given by [ω1, ω2] with ω2 < 1, the corresponding aggregate process

is I(0), for any shape of the distribution of a. On the other hand, if ω2 = 1 and the

distribution of a is such that P (a = 1) > 0, then ȲNt converges to an I(1) random

variable. An interesting intermediate case arises whenever ω2 = 1 and a belongs to a

family of absolutely continuous distributions such that P (a = 1) = 0. To characterize

the convergence in this case, Zaffaroni (2004) considers the following semiparametric
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specification of the density of a ∈ (0, 1) around unity,4

f (a) ∼ cb (1− a)−b , as a→ 1, 0 < cb <∞, b ∈ [0, 1)

In this case, ȲNt converges to a stationary random variable provided b < 0.5 and to

a nonstationary one otherwise. Interestingly, if 0 ≤ b < 0.5, the limit of ȲNt is a long-

memory process and if b > 0, the limit process can be characterized as a fractionally

integrated process with order of integration d = b.

Under similar assumptions as the ones adopted in this paper, Zaffaroni (2004) shows

that provided the limit of ȲNt is stationary, a strong LLN holds and ȲNt
L2→ Et (yt) =

Yt. In this case, the idiosyncratic component converges almost surely to zero while

the common component converges in L2 to the corresponding expectation
5

N−1

N∑

i=1

ρiut
(1− aiL)

L2→ EI

(
ρut

1− aL

)
=

∞∑

j=0

EI
(
aj
)
ut−j .

However, whenever the limit of ȲNt is a nonstationary random variable, the con-

vergence above fails: the idiosyncratic component no longer vanishes because the

variance of N−1
∑N

i=1
εit

(1−aiL)
tends to infinity. On the other hand, the common com-

ponent does not converge to its expected value because neither the Bochner nor the

Pettis integral of this component exist.

In principle, this could be a major drawback for the results established in Section 2.

If nonstationary variables are observed, ȲNt might not be a good proxy for Yt. Then,

one should not expect the persistence estimates obtained with aggregate data, ȲNt,

4This condition is semiparametric because the behavior of the density for any given interval [0, γ2]

with γ2 < 1 is unspecified. Standard distributions, such as the Uniform or the Beta, are contained

in this specification by setting b = 0 and b ≥ 0, respectively.
5The expectation of the idiosyncratic component is taken with respect to the Pettis integral (see

Uhlig, 1986). This is because the Bochner integral (which extends the definition of the Lebesgue

integral to functions taking values in a Banach space) of that component may not exist. This is the

well known measurability problem (Judd, 1985).
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to be close to those obtained with the corresponding disaggregate variables. Notice,

however, that this problem has an easy solution. Taking first differences from the

original aggregate data, ȲNt, we obtain

(1− L) ȲNt =
1

N

(
N∑

i=1

(1− L) εit
(1− aiL)

+
N∑

i=1

(1− L) ρiut
(1− aiL)

)

, (8)

and, in this case, the same results as in the case where the limit of ȲNt is stationary

are recovered, that is, the idiosyncratic component in (8) converges to zero while the

common one converges to the corresponding expectation. Thus, it holds that

(1− L) ȲNt
L2→ (1− L)Yt, (9)

where (1− L)Yt is the first difference of Yt = EI (yt) and is a stationary process.

Thus, whenever nonstationarity is detected, the usual procedure of first differentiating

the data would be sufficient in order to guarantee the convergence of (1− L) ȲNt to

(1− L)Yt. The IRF of Yt can be estimated by first estimating the IRF associated

with (1− L) ȲNt, and, then, cumulating the corresponding values. That is,

ÎRFAG (t, h) =
h∑

j=1

̂IRF(1−L)ȲN (j, t) ,

where ÎRFAG (t, h) and ̂IRF(1−L)Ȳ (j, t) denote the estimates of the IRFs associated

with Yt and with (1− L)Yt, respectively.
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