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Abstract
Although it is commonly accepted that most macroeconomic variables are non-stationary,
it is often difficult to identify the source of the non-stationarity. Integrated processes and
short-memory models with trending components, possibly affected by structural breaks,
imply similar features in the data and, accordingly, are hard to distinguish. The goal of
this article is to extend the classical testing framework of I(1) versus I(0) + trends and/or
breaks by considering a more general class of models under the null hypothesis: fraction-
ally integrated (FI) processes. The asymptotic properties of the proposed tests are derived
and it is shown that they are very well-behaved in finite samples. An illustration using US
inflation data is also provided.

I. Introduction
A standard practice in most macroeconomic applications is to test whether the trend com-
ponent of a variable is best represented as stochastic or deterministic. Typically, the sto-
chastic trend is characterized as a unit root process with a drift while the deterministic one
is represented as the sum of a stochastic short-memory component and some deterministic
trends. Perron (1989) contributed to this literature by showing that standard unit root tests
could lead to erroneous conclusions if the true data generating process (DGP) was a short-
memory –I (0)– process containing breaks in the deterministic components. This seminal
contribution was the starting point of a myriad of articles on the problem of distinguishing
between I (1) and I (0)+ breaks processes.
Nevertheless, unit root processes are a very particular class within the group of in-

tegrated processes. There is substantial empirical evidence showing that the behaviour of
many macroeconomic variables can be better captured by fractional as opposed to integer
integration orders, see for instance Haubrich (1993), Michelacci and Zaffaroni (2000) and
Mayoral (2006) among others.1 There are also theoretical underpinnings that justify the
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no SEJ2006-00369, the BGSE Research Network and the Generalitat de Catalunya is gratefully acknowledged. The
usual disclaimer applies.
JEL Classification numbers: C22, C12.
1See also Henry and Zaffaroni (2002) for a survey of empirical applications in the areas of macroeconomics and
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existence of fractional roots in macroeconomic data. They are based on the results of
Robinson (1978) and Granger (1980) that show how the aggregation of dynamic hetero-
geneous processes can give rise to fractional integration. Since the existence of this type
of behaviour at the disaggregate level is widely documented, fractionally integrated (FI)
processes at the aggregate level are likely to arise in practice. FI models encompass the tra-
ditional I(0)-I(1) setup but also offer other interesting possibilities to model the persistence
of shocks.
Not surprisingly, it is also difficult to provide an unambiguous answer as to whether

a process is best represented as fractionally integrated or as I(0) plus some deterministic
components, possibly perturbed by sudden changes, since a similar identification prob-
lem as in the I(1) versus I(0) + breaks case is found here. The issue of detecting patterns
similar to those of an FI process when the DGP is short-memory containing deterministic
terms and breaks has been widely analyzed (see Bhattacharya, Gupta andWaymire, 1983;
Teverovsky and Taqqu, 1997; Lobato and Savin, 1998; Diebold and Inoue, 2001; Giraitis,
Kokoszka and Lerpus, 2001; Granger and Hyung, 2004; Davidson and Sibbertsen, 2005;
Perron and Qu, 2006, etc.).2 It is generally concluded that the use of standard techniques
devised for FI processes could lead to the detection of spurious FI behaviour when applied
to short-memory processes containing trends and/or breaks. The opposite effect is also well
documented, that is, conventional procedures for detecting and dating structural changes
tend to find spurious breaks, usually at the middle of the sample when, in fact there is
only fractional integration in the data (see Nunes; Kuan and Newbold, 1995; Hsu, 2001;
Krämer and Sibbertsen, 2002).
There is increasing interest in developing techniques to distinguish between frac-

tional integration and I(0) models containing trends and breaks.3 Most of the papers in
this area consider the problem of testing for (stationary) long-memory versus a weakly
dependent serieswith smooth trended components or breaks in themean (seeKünsch, 1986;
Heyde and Dai, 1996; Iacone, 2005; Berkes et al., 2006; Giraitis, Leipus and Philippe,
2006; Ohanissian, Russel and Tsay, 2008). Although this problem is of genuine interest,
many macroeconomic variables seem to display non-stationary orders of integration,
non-smooth trends or breaks in the trending components and, therefore, the above-
mentioned techniques would not be useful. Surprisingly, the problem of testing for non-
stationary fractional integration versus short-memory + trends (possibly containing breaks)
has been less studied. Shimotsu (2006a) presents two techniques to distinguish between
FI(d) models, with d ∈ (−1/2, 2), and other data generating processes (DGP) that can
generate spurious persistence. However, these techniques cannot be applied to trending
data since the FI models considered in that paper cannot accommodate trends.
The goal of this article is to develop a simple testing device that is able to deter-

mine whether the non-stationarity observed in the data is due to strongly persistent shocks,
modelled as a non-stationary fractionally integrated variable, or to the existence of determ-
inistic trends, possibly containing breaks, in an otherwise stationary process. Thus, struc-
tural breaks will only be allowed under the alternative hypothesis. This approach is similar

2Davidson and Sibbertsen also point out that cross-sectional aggregation of a fairly general class of nonlinear
processes produces a model that not only has the same correlation patterns as FI processes but is also observationally
equivalent to FI, in the sense that the aggregated model is linear and converges to fractional Brownian Motion.
3See Banerjee and Urga (2005) and the references therein.
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to that in Zivot and Andrews (1992), Banerjee, Lumsdaine and Stock, (1992) and Perron
(1997) in the classical I (1) versus I (0)+ structural breaks framework. The test is based on
the likelihood ratio principle and the statistic is given by the ratio of two sums of squared
residuals, computed under the alternative and the null hypotheses.
The structure of the article is as follows. Section II presents themodel and the hypotheses

of interest. Section III analyzes the problem of testing for FI vs. I (0)+ trended regressors.
This framework is extended in section IV by allowing for the presence of breaks (occur-
ring at an unknown time) in the deterministic components. Section V presents the results
of some Monte Carlo simulations that evaluate the finite-sample performance of the test
introduced in section IV. An application using US inflation data is reported in section VI.
Section VII draws some final conclusions. All proofs are gathered in appendix A while
critical values for the proposed tests are presented in appendix B.
In what follows, non-stationary FI(d) processes are defined as the cumulation of

stationary FI (d− 1) variables. The following conventional notation is adopted through-
out the article: L is the lag operator, �=(1−L),�(.) is the gamma function, Bd(.) denotes
(standard) fractional Brownian motion (fBM) corresponding to the limit distribution of the
standardized partial sums of stationary FI(d) processes,4 w→ denotes weak convergence, p→
means convergence in probability and ‘≡’denotes equivalence in distribution.All integrals
are taken with respect to the Lebesgue measure.

II. The model and the hypotheses
This section presents the basic framework that will be considered in the article along with
the null and the alternative hypotheses of interest.
To capture the features observed in most macroeconomic variables, that is, the exis-

tence of trends and/or very persistent innovations, we consider two families of competing
models: non-stationary fractionally integrated processes and processes that are the sum
of a deterministic component, with parameters that may change over the sample, and a
short-memory term. These two classes of models can be nested in the following equation.
We assume that the data y1, . . ., yT is generated as

yt =�′Zt +�′Vt(�)+ xt , t=1, 2, . . ., (1)

(1−L)dXt =ut , (2)

and

Vt(�)=
{
Zt−TB t>TB,
0 otherwise,

where Zt is a vector of deterministic components given by Zt =(1) or Zt =(1 t), corres-
ponding to the cases where a constant or a constant and a linear trend are included in the
model. The parameter TB represents the time when the break occurs and �=TB/T ∈�=
[�L,�H ]⊂ (0, 1) denotes the (relative) timing of this change. The processes yt and Zt
are observable, � and � are vectors of unknown parameters and ut is a weakly dependent
4According to the notation introduced in Marinucci and Robinson (1999), Bd (.) is a type I fractional Brownian

motion.
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process. If � is different from zero, Vt(�) captures the existence of changes in the coeffi-
cients associated with the deterministic components Zt .
Under the null hypothesis, yt is considered to be a non-stationary FI(d) process with

no breaks, so it is assumed that d=d0∈ (0.5, 1.5) and �=0.
The definition of non-stationary FI processes is similar to that employed, for instance,

in Velasco and Robinson (2000), that is,

(1−L)Xt =at , t >0
(1−L)d0−1at =ut , t=0, ±1, ±2, . . .,

where at is a stationary FI(d0 − 1) process and the filter (1−L)� is defined as (1−L)� =∑∞
i=0 �i(�)Li with

�i(�)= �(i− �)
�(−�)�(i+1) . (3)

In some economic problems, the order of integration under the null hypothesis, d0, is
known, for instance, in the popular unit root case where d0 is set equal to 1. Nevertheless,
in most cases this value is unknown. Accordingly, the null hypothesis will be simple or
composite, that is,

H0 :d=d0, �=0 for some d0∈ (0.5, 1.5), (4)

or H ′
0 :d ∈D0, �=0, D0= [d, d̄ ]⊂ (0.5, 1.5), (5)

corresponding to the cases where d0 is known or unknown, respectively.
Under the alternative hypothesis, the process yt is assumed to be the sum of some

deterministic components, whose parameter values may change over the sample, and a
short-memory term. Therefore, d=0 is imposed. The case where no breaks in the coeffi-
cients of the deterministic components (�=0) are allowed is analysed in section III. Section
IV deals with the case where � is (partially or totally) unconstrained, thus allowing for the
possibility of a break occurring at an unknown time TB. More specifically, the alternative
hypothesis is formulated as

H1 :d=0, �=0, (6)

or H ′
1 :d=0, � unconstrained (totally or partially). (7)

When changes in the parameter values are allowed, attention is exclusively focused on
the case where, at most, a single break exists. An extension to a multiple-change environ-
ment can be implemented along the lines of Bai (1999) and Bai and Perron (1998).
The following condition will be adopted throughout the article.

Condition 1. The stationary sequence {ut} admits a moving-average representation
ut =�(L)�t , where�(z)=∑∞

j=0�jz j, and the coefficients�j are such that
∑∞

j=0 j|�j|<∞.
The sequence {�t} is an unobserved i.i.d. zero-mean process with unknown variance equal
to 	2. We further assume that E(uu′)=�, where u= (u1, . . .,uT )′ is a T ×1 vector and � is
a positive-definite variance-covariance matrix.

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011
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III. Preliminaries: testing fractional integration versus I(0) + trends
This section explores the problem of testing whether the trend component of a process is
stochastic or deterministic. Typically, the former is represented by a unit root process with
a drift. This section considers a broader category of models, non-stationary fractionally
integrated processes, which nest the unit root class as a particular case. In addition, it
establishes the basic testing framework that will be used throughout the article.
Consider the setup introduced in section II and the following set of conditions. These

assumptions are only intended to simplify the exposition and motivate the testing strategy
and will be weakened soon.

Condition 2. � is known and equal to zero.
Condition 3. d0, the degree of integration under H0, is known.
Condition 4. ut = �t is an i.i.d. process.
Condition 5. The process {�t} is Gaussian.
Condition 2 implies that the coefficients of the deterministic components are stable

throughout the sample. Condition 3 indicates that the null hypothesis H0 is that defined in
equation (4). Condition 4 strengthens condition 1 by assuming that ut is i.i.d. Condition
5 will allow us to give a likelihood-ratio test interpretation to the test proposed in this
section. While condition 2 will be maintained throughout this section, conditions 3–5 will
be relaxed shortly.
Under conditions 1–5, the problem of testing H0 against H1 is straightforward since it

is simply a test of a simple hypothesis. Notice that, as � is assumed to be equal to zero,
the null and alternative hypotheses only differ in the value of one parameter: the degree
of integration of the stochastic component xt . Thus, a natural way of testing H0 against
H1 would be by means of a likelihood ratio test, which, by the Neyman-Pearson lemma,
would be the most powerful invariant test. Minus two times the log likelihood is (except
for an additive constant) given by

L(di,�)|Hi =	−2(�di y− (�diZ)�)′(�di y− (�diZ)�), i∈{0, 1},
where d0 and d1(=0) are the orders of integration under H0 and H1, respectively, �d0y=
(�d0y2, . . .,�d0yT )′, �d1y= y= (y1, . . ., yT )′, (�d0Z)=(�d0Z2, . . .,�d0ZT )′ and �d1Z=Z=
(Z1,Z2, . . .,ZT )′.
From the developments in Lehmann (1959), the most powerful invariant test of d=d0

vs. d=0 rejects H0 for small values of
min

�
L(d,�)|H0 −min

�
L(d,�)|H1 .

The test statistic is the difference of the sum of squared residuals from two constrained
Ordinary least squares (OLS) regressions, one imposing d=d0 and the other d=0. Re-
arranging terms, it follows that the critical region of the most powerful invariant (MPI) test
can be written as

R(d0)=T 1−2d0 (y−Z �̃)′(y−Z �̃)
(�d0y−�d0Z �̂)′(�d0y−�d0Z �̂)

<kT (8)
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for some kT , where �̂ and �̃ denote the OLS estimators of � under H0 and H1, respec-
tively.5
The assumptions imposed above are too unrealistic to be useful in applications. It is not

difficult, however, to modify the test in equation (8) so that it can still be employed for the
same purposes when conditions 2–5 are relaxed. Although optimality is lost under more
general assumptions, section V will show that the test still performs well in finite samples.
If condition 4 is dropped, implying that � is unknown and, in general, different from

the identity matrix, the ratio R(d0) will have a limiting distribution depending on the error
variances and covariances. However, it is easy to construct a modified statistic that does
produce a valid large-sample test.
The simplest way to proceed will be to use a semi-parametric correction that deals

with the correlation structure of � in such a way that the corrected statistic has the same
asymptotic distribution as that described in theorem 1. A feasible statistic can be obtained
as

Rf (d0)=T 1−2d0
(


̂
2

�̂0

)−1
(y−Z �̃)′(y−Z �̃)

(�d0y−�d0Z �̂)′(�d0y−�d0Z �̂)
, (9)

where 
̂ and �̂0 are consistent estimators of the quantities 
=	�(1) and �0=	2
∑∞

i=0�
2
j ,

respectively. The factor (
̂
2
/ �̂0)−1 needed to construct equation (9) can be estimated by

non-parametric kernel techniques, analogous to those used in the estimation of the spectral
density. Details on the estimation of this quantity will be provided in section V.
In many applications, the order of integration d0 is unknown and, therefore, the test

Rf (d0) cannot be computed either. In these cases, attentionwill be focused on the composite
null hypothesis H ′

0, that is, xt is an FI(d) process with d ∈D0= [d, d̄]⊂ (0.5, 1.5) under
H ′
0. We suggest to use the statistic Rf (d̂T ), which is defined as

Rf
(
d̂T
)=T 1−2 ˆdT

(

̂
2

�̂0

)−1
(y−Z �̃)′(y−Z �̃)

(� ˆdT y−� ˆdT Z �̂)′(� ˆdT y−� ˆdT Z �̂)
, (10)

and is obtained by replacing d0 by d̂T in equation (9), where d̂T is a T �-consistent estimator
of d0, with �>0.
Finally, in applications, the filter �d cannot be directly applied because an infinite

number of data points would be needed. Instead, to compute the relevant statistics, we
apply a truncated filter, �dT , that yields

�dT xt =�d−1T �xt =
t−1∑
i=0

�i(d−1)at−i, t=2, . . .T

=ut −
∞∑
i= t

�i(d−1)at−i.

5The statistic in equation (8) is similar to the Von-Neumann ratio proposed in the framework of efficient unit root
tests (see Sargan and Bhargava, 1983 and Bhargava, 1986). It also bears some similarities with the non-parametric
variance ratio unit root test introduced by Breitung (2002).
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Application of this filter to Z yields

�dTZt = (�dT )Zt = (
t(d) 
t(d−1)),
where 
t(�)=

∑t−1
i=0 �i(�).6 To simplify the notation, in the following we will denote the

truncated filter by �d .
Theorem 1 presents the asymptotic distributions of Rf (d0) and Rf (d̂T ) under assump-

tions 1–3 and 1 and 2, respectively.

Theorem 1. Suppose {yt} is generated by models (1) and (2) with d=d0∈D0. Then,
(a) under conditions 1–3 and H0, it follows that

Rf (d0)
w→
∫ 1

0
(Bcd0 (r))

2 dr,

where Bcd0 (r), with c∈{�, 
}, is the L2 projection residual from the continuous time
regression,

Bd0 (r)= �̂
′
zc(r)+Bcd0 (r), c∈{�, 
},

where z�(r)=(1) and z
(r)=(1, r), according to whether Zt contains a constant or
a constant and a linear trend, and �̂ solve

min
�

∫ 1

0
|Bd0(r)−�′zi(r)|2 dr.

(b) Under conditions 1 and 2 andH0, if d̂T is a T �-consistent estimator of d0, with �>0
and d̂T >0.5, it follows that

Rf (d0)−Rf (d̂T )=op(1).
Several methods for obtaining estimates of d suit the framework considered in this

article well. For instance, the semi-parametric exact local Whittle estimator proposed in
Shimotsu and Phillips (2005) and Shimotsu (2006b) provides T �-consistent estimates of
d for non-stationary FI(d) models containing a linear trend.
For large enough T , any consistent estimator of d0 will always be larger than 0.5

underH0. However, in finite samples, estimates smaller than this quantity can be obtained.
Thus, in applications we propose using the following simple rule for choosing d̂T : define
d̂T =max{dL, d̂}, where dL=0.5 + ε, for some small ε>0 and d̂ is the estimated value of
d0 obtained by applying one of the methods available in the literature.
Finally, the following theorem states that the test proposed in this section is consistent.

Theorem 2. Suppose {yt} is generated by models (1) and (2), with d=�=0. Then, the test
based on the statistic Rf (d0) (Rf (d̂T ), for some d̂T >0.5) rejects the hypothesis of H0 (H ′

0)
with a probability approaching 1.
It is easy to check that the test is also consistent if the true process is FI(d*), withd*<0.5.

In this case, both (y−Z �̃)′(y−Z �̃) and (� ˆdT y−� ˆdT Z �̂)′(� ˆdT y−� ˆdT Z �̂) are Op(T ), since
they contain the sum of squared residuals from two stationary processes, so the ratio is
6Notice that t= (1−L)−11(t >0), where 1(,) denotes the indicator function.
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Op(1) (and strictly greater than zero). Then, the statistic is the product of T 1−2d0 , where
d0 is the value of d under the null hypothesis, and a term that is Op(1). It follows that the
product tends to zero at a rate T 1−2d0 , implying that the probability of rejecting H0 tends
to 1. A similar behaviour has also been observed in other unit root tests that tend to reject
their corresponding null hypotheses (d=1 or d=0) when the true DGP is fractionally
integrated of order d ∈ (0, 1) as shown by Diebold and Rudebusch (1991), and Lee and
Schmidt (1996), respectively.
Thus, it is convenient to stress that the rejection of the null hypothesis does not imply

the acceptance of the alternative since other DGPs than the one postulated under H1 can
also cause rejection of H0, as described above. If the null hypotheses H ′

0 is ruled out, one
can conclude that the DGP is not a non-stationary FI process. Other techniques developed
for distinguishing between stationary FI models and some types of trends and breaks can
be applied at this point to discard the possibility that the data is a stationary FI process, see
Berkes et al. (2006), Giraitis et al. (2006), etc.

IV. Testing fractional integration versus I(0)+ breaking trends
Perron (1989) was the first to point out that tests of stochastic versus deterministic trends
tend to favour the former hypothesis in cases where the trend is, in fact, deterministic
but contains sudden changes in its parameter values. This section extends the procedure
proposed in section III so it can accommodate structural breaks under the alternative
hypothesis.
Let yt be defined as in equations (1) and (2), and assume that condition 1 holds. A

likelihood ratio test, in the spirit of Cox (1962), can still be implemented in this case,
provided the candidate for break date, TB, is known. In this case, the vector Vt(�) is com-
pletely determined since �=TB / T is also known. Thus, following similar steps to those
in section III, a feasible statistic for testing for H0 versus H ′

1 could be constructed as

T 1−2d0
(


̂
2

�̂0

)−1
min�,�(y−Z�−V (�)�)′(y−Z�−V (�))
min�(�d0y−�d0Z�)′(�d0y−�d0Z�)

, (11)

where V (�)=(V ′
1(�), V ′

2(�), . . .,V (�)′T )′ and 
̂
2
and �̂0 are consistent estimates under H0

of 
2=	2�(1)2 and �0=	2
∑∞

i=0�
2
j , respectively.

However, for the general case where the candidate for break date is unknown, the
procedure needs to be modified slightly. Under H0, � is a nuisance parameter that is not
identified. The usual procedure in these cases consists of, first, computing the feasible test
equation (11) for a grid of values of �∈� and, then, computing a certain functional of
these pointwise statistics (see for instance Andrews and Ploberger, 1994).
We follow this approach here by considering the infimum of a sequence of statistics

computed for different values of �∈�⊂ (0, 1). Since considering the whole interval (0,1)
would lead to tests with very low power, optimization is carried out in � ∈ �, where
�= [�L,�H ] for some 0<�L <�H <1. More specifically, we will use the restricted inter-
val�= [0.15, 0.85], as suggested byAndrews (1993).Afeasible statistic,R fb (d0), for testing
H0 versus H ′

1 can be computed as

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011



286 Bulletin

Rfb(d0)=T 1−2d0
(


̂
2

�̂0

)−1

inf
�∈�

min�,�(y−Z�−V (�)�)′(y−Z�−V (�)�)
min�(�d0y−�d0Z�)′(�d0y−�d0Z�)

, (12)

where �̂ and (�̃, �̃) are the OLS estimates of the parameters � and � under H0
and H ′

1, respectively. The null hypothesis will be rejected for small values of equation
(12).
The asymptotic behaviour of Rfb(d0) depends on the regressors included in Zt but, in

addition, on the terms that are allowed to break. Four different possibilities, correspond-
ing to the cases considered by Perron (1989) and Zivot and Andrews (1992), have been
analysed. Three of these models contain both a constant and a linear trend but differ in the
coefficients that are allowed to vary over the sample:Model 1 allows for a break in the level
of the series, Model 2 allows for a change in the rate of growth and, finally, Model 3 admits
both changes. In addition, we also consider Model 0, where Zt only contains a constant
that is allowed to break once in the sample.7 More specifically, denoting �=(�0, �1)′ and
�=(�0,�1)′, the four models can be summarized as:
Model 0: �0 unconstrained, �1=0; �0 unconstrained, �1=0.
Model 1: �0, �1 unconstrained; �0 unconstrained, �1=0.
Model 2: �0, �1 unconstrained; �0=0, �1 unconstrained.
Model 3: �0, �1 unconstrained; �0, �1 unconstrained.

In order to compute the statistic Rfbi (d0), with i∈{0, 1, 2, 3}, corresponding to Models
0 to 3, respectively, the values of the constrained parameters are imposed and then, the
remaining parameters are estimated byOLS as usual. Theorem3describes the large-sample
properties of Rfbi (d0) for each of the four cases considered.

Theorem 3. Suppose {yt} is generated as in equations (1) and (2) with d=d0>1/2. Then,
under condition 1 and H0, the asymptotic distribution of Rfbi (d0) for i∈{0, 1, 2, 3} is given
by

Rfbi (d0)
w→ inf

�∈�

(∫ 1

0
(Bid0 (r,�))

2 dr
)
, i∈{0, 1, 2, 3},

where Bid0 (r,�) is the L2 projection residual from the continuous time regressions

Bd0 (r)= �̂
′
zi(r)+ �̂

′
vi(r,�)+Bid0 (r,�), i∈{0, 1, 2, 3},

where v0(r,�)= v1(r,�)=(1(r>�)), v2(r,�)=((r − �)1(r>�)); v3(r,�)=((1(r>�)) ×
(r−�)1(r>�)); z0(r)=(1) and z j(r)=(1 r) for j∈{1, 2, 3}; and �̂ and �̂ solve

min
�,�

∫ 1

0
|Bd0(r)−�′zi(r)−�′vi(r,�)|2 dr, i∈{0, 1, 2, 3},

(See appendix A for details).

7This case may be of interest when modelling series that do not seem to display a trend, such as inflation or interest
rates.
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H0 will be rejected against H ′
1 for small values of R

f
bi (d0). Critical values for each of

the four models considered above have been obtained by Monte Carlo simulation and are
presented in appendix B, Tables B3–B6.
When composite hypotheses such as H ′

0 are considered, the test-statistic defined in
equation (12) can still be employed if d0 is replaced by d̂T , a T �-consistent estimator of
d0 under the null hypothesis, with �>0 and d̂T >0.5. Theorem 4 states that under these
assumptions the statistic Rfbi (d̂T ) defined as

Rfb(d̂T )=T 1−2 ˆdT
(


̂
2

�̂0

)−1
inf�∈�(y−Z �̃−V (�)�̃)′(y−Z �̃−V (�)�̃)

(� ˆdT y−� ˆdT Z �̂)′(� ˆdT y−� ˆdT Z �̂)
, (13)

has the same distribution as Rfbi (d0), for i={0, 1, 2, 3}.

Theorem 4. Suppose {yt} is generated by models (1) and (2) and d=d0>0.5. If d̂T is a
T �-consistent estimator of d0, with �>0 and d̂T >0.5 and condition 1 and H ′

0 hold, then

Rfbi (d0)−Rfbi (d̂T )=op(1), for i={0, 1, 2, 3}. (14)

It follows that H ′
0 will be rejected against H ′

1 when the value of R
f
bi (d̂T ) is smaller than

the corresponding critical value.
Finally, the following theorem states the consistency of the proposed test.

Theorem 5. Let yt be defined as in equations (1) and (2) with d=0 and � possibly different
from zero. Then, the test based on the statistics Rfbi (d0) (R

f
bi (d̂T )) rejects the hypothesis of

H0(H ′
0) with a probability approaching 1.

V. Finite sample results
This section presents the results of someMonte Carlo experiments designed to illustrate the
identification problemaddressed in this article and to explore thefinite-sample performance
of the proposed techniques. Two sample sizes (T =100 and T =400) have been considered
in all the experiments in this section. The number of replications in each experiment was
set at 5,000.
To illustrate that a short-memory process with breaks can be easily confused with

an FI(d) process, we have carried out a simple experiment. We have generated vari-
ables of the form yt =10+0.5t+bt(�)+ �t , where t=1, . . .,T , �t ∼ i.i.d. N (0, 1), and
bt(�)= (�01(t >TB)+
�1(t− TB)1(t >TB)) is the term containing the breaks. Different values of �0 and �1 have
been considered, namely, �0 ∈{0, 1, 2, 4} and �1= {0, 0.1, 0.2, 0.3}, and breaks occur at
the middle of the sample. The semiparametric exact local Whittle estimator with detrend-
ing (Shimotsu, 2006b) has been applied to these processes to obtain estimates of d.8 Table
1 reports the mean and the standard deviation of the estimates of d over the 5,000 repli-
cations, for different combinations of �0 and �1. When �0=�1=0, accurate estimates of
d=0 are obtained. However, when breaks in the deterministic components are introduced,
8The Whittle estimator is known to have better properties than other techniques such as the R/S or the log-

periodogram under some types of trends and breaks (see Iacone, 2005).
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TABLE 1

Mean and STD of d̂T (FELW)*

DGP (H1) : yt =10+0.5t+�01(t >�T )+�1(t−�T )1(t >�T )+ �t ; �t ∼ iN (0, 1);�=0.5
No break Model 1 Model 2 Model 3

�0= 0 1 2 4 0 0 0 1 2 4
�1= 0 0 0 0 0.1 0.2 0.3 0.1 0.2 0.3

T =100 0.075 0.097 0.339 0.625 0.536 0.816 0.978 0.557 0.823 0.978
(0.199) (0.182) (0.152) (0.124) (0.128) (0.109) (0.095) (0.123) (0.109) (0.099)

T =400 −0.03 0.206 0.415 0.636 0.923 1.114 1.223 0.923 1.111 1.209
(0.102) (0.085) (0.073) (0.056) (0.042) (0.041) (0.042) (0.043) (0.042) (0.042)

Notes: *Standard deviations in parentheses.

positive and large values of d are found. The simulations show that estimates are particu-
larly sensitive to breaks in the trend component and that even a small change in the slope
brings about a considerable increase in the estimated values of d. Moreover, the size of
the break matters a lot: the larger the size, the higher the estimate of d.
Next, we explore the finite-sample properties of the technique proposed in section IV.

To study the size of the test, ARFIMA (1,d, 0) processes, for different values of d and �
(the autoregressive parameter), have been generated, more specifically, d ∈{0.7, 0.9, 1.1}
and�∈{0, 0.3, 0.8}. Data has been generated as follows. Firstly, the vector of innovations
has been obtained as �t∼ i.i.d.N (0, 1), for t=1, . . .,T +m andm=1, 000.AR(1) processes
have been computed as ut =�ut−1+ �t , t=2, . . .T +m, for the values of� specified above.
Next, fractionally integrated processes of order (d−1) have been simulated as

x*t =�−(d−1)ut =
T +m−1∑
i=0

�i(1−d) ut−i, (15)

where the coefficients �i(.) are defined in equation (3). Finally, the firstm−1 observations
are dropped and non-stationary FI (d) processes are generated by cumulating x*t , that is

xt =
m+ t−1∑
j=m

x*j , t=1, . . .T .

The resulting data has been employed to compute the statistics Rfbi (d̂T ), i∈{1, 2, 3},
defined in equation (13). Since a value of d>0.5 is needed to perform the test, the
value d̂T has been chosen according to the following rule: d̂T =max{0.5001, d̂}, where d̂
is the FELW estimator with detrending. The variance of ut , �0, has been estimated under
H0 by the sample variance, �̂0=T−1∑(� ˆdT yt −� ˆdT Z �̂)2.
The parameter 
2= �0+2

∑∞
i=1 �i, where �i denotes the ith-autocovariance of ut , is usu-

ally estimated as 
̂
2= �̂0+2

∑q
i=1 �(j/q)�̂i, where �̂i=T−1∑T

t= i+1 ût ût−i, �(.) is a kernel
and q is its bandwidth parameter. Several estimators of this quantity, that differ in the
choice of �(.) and q, have been proposed.9 A common conclusion from manyMonte Carlo

9Although estimation of 
2 is routinely carried out in the computation of unit root tests, Pötscher (2002) has shown
that it belongs to the so-called ‘ill-posed’ estimation problems. Uniformly consistent estimators of 
2 can only be
achieved if very strong a priori assumptions on the set of feasible DGPs are considered. Otherwise, confidence sets
may be too large to convey useful information on this quantity.
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experiments is that the choice of kernel is usually not very important for small sample
results (Andrews, 1991; Cheung and Lai, 1997). However, correct choice of q has been
shown to be critical. In order to investigate the sensitivity of the test to the modelling of
short-run dependence, we have employed three different automatic bandwidth selection
procedures, more specifically, those introduced in Andrews (1991), qA, Andrews and
Monahan (1992), qAM , and Newey and West (1994), qNW .10 The Bartlett kernel has been
used in all cases so that estimates of 
̂

2
k have obtained as


̂
2
k = �̂0+2

qk∑
i=1
(1− i/ (qk +1))�̂i, k={A, AM , NW}. (16)

Table 2 reports the corresponding rejection frequencies at the 5% significance level.
For moderate sample sizes (T =100), the test is generally slightly oversized when 
̂

2
AM is

used to correct for short-term autocorrelation and undersized when either 
̂
2
A or 
̂

2
NW are

employed. When larger samples sizes are considered (T =400), the use of 
̂2AM yields a

TABLE 2

Size of Rfbi (d̂T ), i∈{1, 2, 3}; S.L.: 5%
DGP (H0) : yt =�−d0ut ;ut = �t / (1−�L); �t ∼ iN (0, 1)
T =100

Rfb1 (d̂T ) Rfb2 (d̂T ) Rfb3 (d̂T )

�= �= �= �= �= �= �= �= �=

̂
2
k 0(%) 0.3(%) 0.8(%) 0(%) 0.3(%) 0.8(%) 0(%) 0.3(%) 0.8(%)

d0=0.7 8.41 8.50 4.30 7.90 8.90 3.10 8.90 11.30 4.20

̂
2
AM d0=0.9 6.70 8.40 4.70 6.71 8.70 2.50 7.60 11.20 3.35

d0=1.1 3.64 5.14 3.10 7.23 5.94 2.50 6.70 7.63 2.90
d0=0.7 2.51 3.82 2.13 1.41 2.40 1.93 2.01 5.00 1.97


̂
2
A d0=0.9 2.25 2.76 2.00 1.80 2.50 1.50 2.20 3.10 1.79

d0=1.1 1.90 2.07 1.90 3.30 2.18 1.80 2.60 1.80 1.05
d0=0.7 1.14 1.92 0.81 1.00 1.60 0.70 1.90 2.07 1.21


̂
2
NW d0=0.9 1.43 1.26 0.64 1.30 1.50 0.30 1.70 1.44 0.62

d0=1.1 0.52 0.37 0.24 1.90 1.00 0.60 1.90 0.69 0.61

T =400
d0=0.7 7.21 8.58 6.60 9.80 7.50 6.02 8.20 9.40 6.70


̂
2
AM d0=0.9 4.93 4.21 5.84 5.00 4.60 5.23 4.70 5.10 5.60

d0=1.1 5.54 4.34 3.81 7.04 3.10 4.90 7.03 2.40 4.80
d0=0.7 2.71 4.80 4.40 3.21 4.53 4.12 3.43 6.10 6.10


̂
2
A d0=0.9 2.37 1.83 2.30 1.99 2.69 1.30 1.70 1.60 1.41

d0=1.1 1.95 1.70 2.12 4.90 2.01 2.20 3.40 1.90 1.80
d0=0.7 6.60 2.70 7.10 6.80 2.70 5.20 7.30 2.60 6.00


̂
2
NW d0=0.9 6.80 2.90 7.60 6.30 2.00 4.40 6.10 2.30 5.60

d0=1.1 4.80 2.30 7.70 6.90 2.10 6.70 6.90 2.30 8.10

10See Cheung and Lai (1997) for a description and a Monte Carlo comparison of these techniques in the unit root
testing framework.
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TABLE 3

Power of Rfbi (d̂T ), i∈{1, 2, 3}; S.L. : 5%*
DGP (H1) : yt =10+0.5t+�01(t >TB)+�1(t−TB)1(t >TB)+ut ; ut = �t / (1−�L), �t ∼ iN (0, 1); �=0.5

Rfb1 (d̂T ) (%) Rfb2 (d̂T ) (%) Rfb3 (d̂T ) (%)

�0 = 1 2 4 0 0 0 1 2 4
�1 = 0 0 0 0.1 0.2 0.3 0.1 0.2 0.3

�=0

̂
2
AM T =100 96.0 95.4 98.3 93.0 94.3 95.2 93.5 82.5 71.3

T =400 100 100 100 100 100 100 100 99.2 97.2

̂
2
A T =100 89.1 85.4 84.6 91.1 90.7 91.2 86.3 72.3 69.3

T =400 100 100 100 100 100 94.4 95.2 89.4 90.1

̂
2
NW T =100 74.1 69.2 71.2 78.1 73.3 70.1 64.2 59.2 45.9

T =400 93.6 92.3 89.1 96.2 96.4 92.1 84.2 87.6 75.5
�=0.3

̂
2
AM T =100 81.2 83.9 84.3 83.1 86.1 83.1 84.3 71.2 61.0

T =400 100 100 100 98.9 99.2 92.4 89.3 83.2 76.5

̂
2
A T =100 74.2 71.5 69.2 71.4 70.1 68.9 67.2 66.2 59.2

T =400 100 100 100 85.2 86.2 74.2 74.2 74.2 71.3

̂
2
NW T =100 63.2 65.4 55.3 61.3 53.4 54.3 45.4 43.6 39.5

T =400 88.4 90.4 85.3 87.4 83.4 82.3 73.2 63.1 70.2
�=0.8

̂
2
AM T =100 23.2 21.8 26.4 21.4 27.3 31.3 15.4 13.1 21.4

T =400 59.4 53.6 58.1 59.1 78.9 79.3 55.4 76.1 79.3

̂
2
A T =100 21.3 24.1 19.8 24.2 29.1 29.3 25.1 11.3 11.0

T =400 61.4 59.8 53.1 51.9 67.4 59.2 51.3 67.1 69.8

̂
2
NW T =100 16.3 18.2 20.2 17.6 19.5 20.0 15.1 11.4 8.8

T =400 45.3 51.3 49.3 46.2 51.2 45.3 46.1 48.2 45.2

Notes: (*) Size-adjusted power.

size that is close to nominal whereas using 
̂
2
A or 
̂

2
NW still yields tests that are, in general,

undersized. Size distortions are generally highest for 
̂
2
NW .

In order to study the power of the test, processes of the form

yt =10+0.5t+bt(�)+ut , (17)

ut = �t
1−�L

,

have been generated,wherebt(�) is defined as above, (�0,�1) take the values�0∈{0, 1, 2, 4}
and �1={0, 0.1, 0.2, 0.3}, and �={0, 0.3, 0.8}. Three different break locations have been
considered, namely, �={0.30, 0.50, 0.70}. For the sake of brevity, since the results were
very similar, only figures computed with �=0.5 are reported. By combining the values
of �0 and �1, processes under Models 1–3 have been generated. The statistic Rfbi (d̂T ) has
been computed on the data corresponding toModel i, i∈{1, 2, 3} for different values of 
̂2k ,
k={A, AM , NW}.Rejection frequencies (computed at the 5%S.L.) are reported inTable 3.
For T =100, power is, in general, high for small values of � (=0 or =0.3) and it

deteriorates when higher autocorrelation is introduced to ut . The highest power is achieved
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TABLE 4

Power of Rfbi (d̂T ) i∈{1, 2, 3};S.L. : 5% DGP (H1) :�d1yt = �t , d1<0.5

Rfb1 (d̂T ) Rfb2 (d̂T ) Rfb3 (d̂T )

T =100 (%) T =400 (%) T =100 (%) T =400 (%) T =100 (%) T =400 (%)
d1=0.1 96.2 100 95.9 100 92.3 100
d1=0.2 79.5 100 78.2 100 74.1 100
d1=0.3 54.5 100 51.1 97.9 47.8 99.3
d1=0.4 31.0 72.5 16.8 69.0 26.0 69.1

when 
̂
2
AM is used.11 Power ranges from 70% to 100% and from 61% to 100% for�=0 and

�=0.3 respectively, and it decreases to 13%–31% for �=0.8. However, if larger sample
sizes are employed (T =400), the power increases considerably, even for high values of
�, as shown in Table 3.
As mentioned earlier, the test is consistent when the alternative hypothesis is a

stationary FI process. To evaluate the behaviour of the test under this type of alternative,
we have generated stationary FI(d) processes as in equation (15), with d={0.1, 0.2, 0.3,
0.4},�=0, and T = {100, 400}. d̂T has been estimated as described above and we did not
perform any short-term correlation correction. The corresponding rejection frequencies
are reported in Table 4.
For moderate values of d (0.1, 0.2), power is around 70%–90% for T =100 (around

100% for T =400) but, not surprisingly, it decreases substantially when d approaches 0.5.
For d=0.4, power is around 20%–30% for T =100 (70% for T =400).

VI. Empirical illustration
We now apply the techniques introduced in this article to the analysis of inflation data.
The study of the statistical properties of this variable has attracted a great deal of atten-
tion because it plays a central role in the design of monetary policy and has important
implications for the behaviour of private agents. However, in spite of the large number
of empirical and theoretical papers on this issue that have appeared recently, there is
no consensus in the literature about the most appropriate way to model the inflation
rate. On the one hand, there is abundant empirical evidence that post-war inflation in
industrial countries exhibits high persistence, close to the unit root behaviour. The papers
of Pivetta and Reis (2007) for the USA and O’Reilly and Whelan (2005) for the euro
zone are two examples. On the other hand, some authors have argued that the above-
mentioned results are very sensitive to the statistical techniques employed. They claim
that the observed persistence may be due to the existence of unaccounted breaks, prob-
ably stemming from changes in the inflation targets of monetary authorities, different
exchange rate regimes or shocks in key prices. For instance, Levin and Piger (2003)
have found evidence of a break in the intercept of the inflation equation and, conditional
on this break, they argue that inflation shows very low persistence. Finally, Cogley and
Sargent (2001, 2005) claim that non-stationary (integrated) representations of inflation

11Similar results have been obtained for the Phillips–Perron unit root test (Cheung and Lai, 1997).
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are implausible from an economic point of view, since they would imply an infinite
asymptotic variance, which could never be optimal if the Central Bank’s loss function
includes the variance of inflation. Thus, they consider inflation to be a short-memory (I (0))
process.
The aim of this section is to shed further light on this controversy by applying the

techniques developed in this article. There is both economic and statistical support for the
hypothesis of FI in inflation. Gadea andMayoral (2006) provide an economic explanation
for the existence of fractional integration in inflation data. They consider a sticky price
model as in Rotemberg (1987) and, by considering firms having heterogeneous costs of
adjusting their prices, show that inflation can behave as an FI process. From an applied
point of view, evidence in favour of FI behaviour in inflation has been reported in several
papers (Baillie, Chung and Tieslan, 1996; Doornik and Ooms, 2004; Gadea and Mayoral,
2006, etc.).
The contradicting results described above could be explained if the inflation rate was

an FI process.Although unit root tests are, in general, consistent against fractional alterna-
tives, their finite-sample power is known to be small, (see Diebold and Rudebusch, 1991).
This might account for the low rejection frequencies of the unit root hypothesis in this type
of applications. On the other hand, if inflation is FI and standard techniques for detecting
and dating breaks are employed, spurious breaks are likely to be detected. The opposite is
also true: if the data contains structural breaks, FI maybe found spuriously too. Thus, we
now test whether the high degree of persistence observed in inflation data is true and can
be characterized using FI models (that encompass the I(1) case) or is spurious and induced
by the existence of structural breaks in the deterministic components in an, otherwise,
short-memory process.
To facilitate comparison with previous analysis, the same data set as in Pivetta and

Reis (2007) has been employed: the price level, Pt , is measured through the seasonally-
adjusted quarterly data on the GDPdeflator from the first quarter of 1947 to the last quarter
of 2003 (9 observations have been added with respect to their analysis). This data has
been obtained from the Bureau of Economic Analysis. Then, inflation is computed as
�t =400* log(Pt/Pt−1), that is, it is the quarterly continuously compounded annualized
rate of change of the price level. Figure 1 presents a plot of this data.
To begin the analysis, Table 5 presents the results of some standard tests for unit roots.

The first three columns contain the figures obtained by applying three different techniques
that take the I(1) model as their null hypothesis: the Dickey–Fuller test with GLS detrend-
ing (Elliott, Rothenberg and Stock, 1996, DF-GLS henceforth), the MZ-GLS test (Ng and
Perron, 2001) and the P-P test (Phillips and Perron, 1988). To correct for the short-term
correlation, different techniques have been employed. The number of lags in the DF-GLS
regression was chosen according to the modified AIC (M-AIC) and the modified SIC
(M-SIC). Estimates of the spectral density needed for the calculation of both the MZ
and the P-P tests were obtained using GLS-detrended autoregressive methods, where the
number of lags in the autoregression was selected according to the M-AIC and the M-SIC.
Similar techniques were also employed to compute the KPSS. A constant was included as
the only deterministic regressor in the regression model.
The results greatly depend on the method employed to perform the short-term correc-

tion.When theM-AIC is used, neither the DF-GLS nor theMZ tests can reject the unit root
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Figure 1. US inflation. 1947.1–2003.4

TABLE 5

Unit root tests on US Inflation

DF-GLS N-P P-P KPSS
Inf. criterion m-aic m-sic m-aic m-sic m-aic m-sic m-aic m-sic
Value of the test −1.31 −2.36* −1.64 −12.99* −5.56** −4.24** 68.2** 11.6**

Notes: (*) (**) denote rejection at the 5% and 1% levels, respectively.

hypothesis. However, the P-P always rejects the I(1) null hypothesis as do the DF-GLS
and the MZ tests computed with the M-SIC. On the other hand, the KPSS tests rejects the
I(0) hypothesis for both the M-AIC and the M-SIC methods, although opposite results are
found when other techniques, such as the Bartlett or the Parzen kernels, are employed to
perform the short-term corrections.
These non-conclusive results could be consistent with the existence of both fractional

integration and some types of structural breaks. Therefore, we have checked whether
there is some evidence of FI in this data set. Table 6 presents the results of estimating d
using different techniques: the Feasible Exact local Whittle (FELW, Shimotsu, 2006b),
the Exact Maximum likelihood (EML, Sowell, 1992) and the Minimun Distance (MD,
Mayoral, 2007) estimators.12 Fractional values of d greater than 0.5 and relatively ‘far’
from both the I (0) and the I (1) hypotheses are found: the estimated values of d are around
0.6 for the three techniques employed. Furthermore, if tests of fractional versus integer
integration (FI versus d=0 or d=1) based on confidence intervals around the estimated
values of d are considered, the hypothesis of FI versus d=0 or d=1 cannot be rejected
at the 5% significance level.

12Models were chosen according to the AIC.
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TABLE 6

Estimated d*
FELW EML MD

d̂T 0.62 0.61 0.58
(0.11) (0.14) (0.12)

Note: *Standard errors in parentheses.

TABLE 7

Rfbi (d̂T ) tests of FI (d) vs I (0) +Breaks; i={0, 2, 3}

Crit val.* 
̂
2
A 
̂

2
AM 
̂

2
NW

Model 0 0.313 0.452 0.426 0.466
d̂TFEWL Model 2 0.324 0.479 0.451 0.493

Model 3 0.288 0.416 0.392 0.428
Model 0 0.485 0.460 0.497 0.328

d̂TEML Model 2 0.514 0.487 0.527 0.341
Model 3 0.446 0.423 0.457 0.306
Model 0 0.657 0.660 0.645 0.436

d̂TMD Model 2 0.699 0.699 0.683 0.454
Model 3 0.699 0.699 0.683 0.409

Note: *Critical values at the 5% S.L.

Finally, we have applied the techniques introduced in this article to check whether
the evidence in favour of FI could be due to the existence of unaccounted breaks in the
deterministic components. Since the true d0 is unknown, we takeH ′

0 as the null hypothesis.
As for the alternative hypothesis, Models 0, 2 and 3 have been considered. The former
introduces an intercept in the inflation equation that is allowed to break as the only deter-
ministic component, which is the model advocated by Levin and Piger (2003). Another
possibility, as Figure 1 suggests, is that inflation could have an upward trend, until about
the middle of the sample, followed by a downward trend. Models 2 and 3 can reproduce
for this behaviour. Table 7 presents the values of the statistics for testing non-stationary FI
against I(0) +breaks. The estimates of d reported in Table 6. have been used to compute
Rfbi (d̂T ), i∈ {0, 2, 3}, as defined in equation (12). The first column of figures in Table 7
report critical values corresponding to the particular model and value of d employed to
run the test. Columns 2 to 4 display the values of the tests computed with several estimates
of the long-run variance 
̂

2
k as defined in equation (16) for k={AM , A, NW}.

Table 7 shows that the finding of FI in inflation data is very robust. According to this
table, there is no evidence to reject the null hypothesis of FI versus the alternative of
I(0)+ breaks for any of the models considered underH ′

1. These conclusions are also robust
to the use of different values of qk employed to perform the short-term correlation correc-
tion. The economic implication of this finding is clear: no evidence of structural breaks
that could induce the observed persistence in inflation data has been found, implying that
the inflation rate is a highly persistent variable.
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VII. Conclusions
This article analyses the long-standing issue of determining the source of the non-
stationarity observed in economic variables: whether it is the result of innovations that
are highly persistent or whether it appears as a consequence of the existence of rare and
unexpected events that change the underlying structure of the series (breaks). We depart
from the traditional framework that sets the unit root process as the null hypothesis by con-
sidering the more general class of non-stationary FI(d) models. The number of interesting
testing frameworks that one could consider is, of course, much larger. Another interesting
possibility would be to consider models where breaks are allowed under both the null and
the alternative hypotheses and one is interested in testing for the degree of integration
(see Perron (1989, 2005), for related references for the I(1) versus I (0)+ breaks case). In
this framework where breaks can occur under both hypotheses, a variance ratio test in the
spirit of Breitung (2002) could be implemented.An advantage of using the latter technique
is that the problem of estimating the long-run variance could be avoided. More research
should be carried out to study this and other possibilities.

Final Manuscript Received: November 2010
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Appendix A
Proof of theorem 1
(a) Consider first the case where condition C holds.
If Zt =(1), then

(y−Z �̃)′(y−Z �̃)=
T∑
t=1
x2t −T−1

(
T∑
t=1
xt

)2
,

where xt is defined in equation (2). From the functional central limit theorem (seeDavydov,
1970) and the continuous mapping theorem, it follows that

T−2d0
T∑
t=1
x2t −

(
T−(1/2+d0)

T∑
t=1
xt

)2
w→
2

∫ 1

0
(B�
d0 (r))

2 dr

=
2
∫ 1

0

(
Bd0 −

(∫ 1

0
Bd0 (r) dr

))2
,

where 
2=	2�(1)2 is the long-run variance.
Convergence of the numerator of equation (8) for the case where Zt =(1 t) can be

obtained using a similar strategy as Marmol and Velasco (2002, p. 38). In this case

T−2d0 (y−Z �̃)′(y−Z �̃) w→
2
∫ 1

0
(B

d0 (r))

2 dr

=
2
(∫ 1

0
B2d0 (r) dr−

(∫ 1

0
Bd0 (r) dr

)2
−12

(∫ 1

0
(r−1/2)Bd0 (r) dr

)2)
.

With respect to the denominator of equation (8), notice that �d0y − �d0Z �̂= �* −
�d0Z(�− �̂), where �*t = �t −

∑∞
i= t−1 �i(d0−1)�xt = �t +Op(td0/2−3/4) (see Marinucci and

Robinson, 2000). Also notice that �d0 t= 
t(d0−1)≈ kt1−d0 . Consider first the case where
Zt = t. Then,

T−1(�d0y−�d0Z �̂)′(�d0y−�d0Z �̂)

=T−1
(

T∑
t=2

�*2t +(�− �̂)2
T∑
t=2
t2(1−d0)−2(�− �̂)

T∑
t=2

�*t t1−d0
)

+op(1). (18)

The first term in equation (18) converges in probability to 	2 given that

T−1
T∑
t=2

�*2t =T−1
T∑
t=2

�2t +T−1
T∑
t=2
Op(td0−3/2)+op(1)

=	2+Op(Td0−3/2)+op(1)=	2+op(1), (19)

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011



Testing for FI vs structural breaks 299

since d0<3/2. We now show that the second and third terms in equation (18) converge to
zero. Using standard results, it is easy to show that

∑T
t=2 �t t1−d0 =Op(T 3/2−d0 ) and that �̂ is

a T 3/2−d0 -consistent estimator of � (see Hamilton, 1994, pp. 459). Thus, the second term
in equation (18) is

T−1(�− �̂)2
T∑
t=2
t2(1−d0)=T−1Op(T−(3−2d0))O(T 3−2d0 )+op(1) p→0. (20)

Finally,

T−1(�− �̂)
T∑
t=2

�*t t1−d0 =T−1Op(T−(3−2d0))

(
T∑
t=2

�t t1−d0 −
T∑
t=2
Op(td0/2−3/4)t1−d0

)

=T−1Op(T−3/2+d0 )+T−1Op(T 3/4−d0/2)
p→0. (21)

Expressions (19), (20) and (21) imply that equation (18) converges to 	2 in probability.
The case where Zt =(1 t) can be analyzed in a similar manner. In this case, (�̂ −

�)=Op(T−(3/2−d0)) and (�̂−�)=Op(1). Thus
T−1(�d0y−�d0Z �̂)′(�d0y−�d0Z �̂) (22)

=	2+T−1
(
(�− �̂)2

T∑
t=2


2t (d0)+2(�− �̂)(�̂−�)
T∑
t=2


t(d0)
t(d0−1)
)

(23)

+T−1
(
2(�− �̂)

T∑
t=2

�t
t(d0)

)
+op(1), (24)

where the op(1) component above gathers the terms that have been shown above to con-
verge to zero.Using the fact that

∑T
t=2 
t(d0)
t(d0−1)=O(T 2−2d0 ) and that

∑T
t=2 �t
t(d0)=

Op(T 1/2), it is straightforward to show that the second and third terms in the RHS of equa-
tion (22) are also op(1). If condition 3 is relaxed, standard use of the continuous mapping
theorem (CMT) yields

T−2d0 (y−Z �̃)′(y−Z �̃) w→
2
(∫ 1

0
(Bcd0 (r)

)2
dr, c∈{�, 
},

where B�
d0 (r) and B



d0 (r) correspond to the cases where Zt =(1) or Zt =(1, t), respectively,

and 
2=	2�(1)2 is the long-run variance. Finally, using similar arguments as above, it is
easy to show that

T−1(�d0y−�d0Z �̂)′(�d0y−�d0Z �̂) p→ �0,

where �0 is the variance of ut .
(b) Consider now the case where condition 2 is dropped. The limit of the numerator of
Rf (d̂T ) can be easily obtained since

T−2 ˆdT

T−2d0 T
−2d0 (y−Z �̃)′(y−Z �̃)=T−2d0 (y−Z �̃)′(y−Z �̃)+op(1), (25)

as T−2 ˆdT /T−2d0 →1 if d̂T is a T �-consistent estimator of d0.

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011



300 Bulletin

Next, denoteGT (d)=T−1(�dy−�dZ�)′(�dy−�dZ�). Sufficient conditions that guar-
antee thatGT (d̂T )−GT (d0)=op(1) are the consistency of d̂T and the fact thatGT (d) p→G(d)
uniformly on an open setB0 containing d0. IfGT (d)

p→G(d) pointwise and {GT} is stochas-
tically equicontinuous in B0, then GT (d)

p→G(d) uniformly on B0. From theorem 21.10 in
Davidson (1994), it follows that {GT} is stochastically equicontinuous provided

G′(d)= sup
d*∈B*0

|G′(d)|d=d* |=Op(1),

whereG′(d)|d= d* is the derivative ofG(d) evaluated at d*∈B*0, whereB*0 is an open convex
set containing B0. The derivative of G(d) is given by

G′(d)|d= d* =T−1
T∑
t=2
(�d*yt −�′�d

*Zt)(log(1−L)(�d*y−�d
*Z�′)). (26)

Noticing that (�d*yt −�′�d
*Z)=�d

*−d0u*t , where u*t =ut −
∑∞

i= t−1 �i(d0− 1)�xt , and
that log(1−L)=−(L+L2/2+L3/3+ · · ·), equation (26) can be written as

G′
T (d)|d=d* =−T−1

T∑
t=2
(�d*−d0u*t )

(
�d

*−d0u*t−1+
�d

*−d0u*t−2
2

+ �d
*−d0u*t−3
3

+ · · ·
)

=−
T−2∑
j=1

�̂�d*−d0u*t
(j)

j
, (27)

where �̂�d*−d0u*t
(j)=T−1∑T

t= j+1(�d
*−d0u*t )(�d

*−d0u*t−j) is the jth sample autocorrelation of
�d

*−d0u*t . Let B*0 be an open ball of radius ε<1/4 centred at d0 . Using a similar strategy
as before, it can be shown that �d*−d0u*t is the sum of an FI(d0−d*) process, �d*−d0ut , and
a process whose sample autocovariance function tends to zero in probability. Also notice
that �d*−d0ut is stationary for any d*∈B*0, since |d*−d0|<1/4. Then, the smaller d*, the
higher the order of integration of �d

*−d0ut and, for a given ut , the higher the value of the
sum of the sample covariances,

∑T−2
j=1 |�̂�d*−d0ut (j)/j|. Notice that

sup
d*∈B*0

|G′(d)|d=d* |≤ sup
d*∈B*0

T−2∑
j=1

∣∣∣∣ �̂�d*−d0ut (j)
j

∣∣∣∣ (28)

and that the arg sup of the right-hand side of equation (28) is d*=d0−1/4 (in which case,
�d

*−d0ut is an FI(1/4) process). Finally, notice that equation (28) is bounded in probabil-
ity since �̂�−1/4ut (j)/j

p→ ��−1/4ut (j)/j≈ kj−3/2, for some constant k and, therefore, the sum of
these terms is well-defined. It follows that T−1(� ˆdT y−� ˆdT Z�)′(� ˆdT y−� ˆdT Z�) p→ �0.When
� is replaced by �̂, similar arguments as those employed in (a) can be used to show that
T−1(� ˆdT y−� ˆdT Z �̂)′(� ˆdT y−� ˆdT Z �̂) p→ �0.

Proof of theorem 2
Under H1, the terms T−1(�d0y− �d0Z �̂)′(�d0y− �d0Z �̂) and T−1(y− Z �̃)′(y− Z �̃) are
the sample variances of stationary and ergodic processes and they tend in probability to
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the corresponding population variances (which are strictly greater than zero). Therefore,
(y−Z �̃)′(y−Z �̃)/ (�d0y−�d0Z �̂)′(�d0y−�d0Z �̂) is Op(1). Similarly, 
̂

2
and �̂0 are also

sample moments of a stationary and ergodic process; therefore, that they are both Op(1).13
This implies that equation (8) tends to zero at a rate T 1−2d0 and, therefore, the probability
of rejecting H1 tends to 1 if T→∞. The same arguments are valid if d0is replaced by d̂T ,
since d̂T satisfies that d̂T >0.5.

Proof of theorem 3
The proof of this theorem closely follows the proof of theorem 1 in Perron (1997), (PE
hereafter)which, in turn, borrows from the proof of theorem1 inZivot andAndrews (1992).
(Z&A, henceforth). To simplify cross-references, the same notation as in those papers has
been adopted. For the sake of brevity, proofs of some intermediate results whose proofs can
be found in PE or in Z&A are not reproduced below but precise references are provided.
We consider, first, the case where ut = �t is an i.i.d. sequence. Let St =

∑t−1
j=0 �j(−d)�t−j

(S0=0), and XT (r) be the partial sum process defined as,
XT (r)=T 1/2−d0	−1S�Tr�, (j−1)/T< r< (j+1)/T for j=1, . . .,T ,

where �.� denotes integer part. Let zitT (�) for i={0, 1, 2, 3} be a vector containing the
deterministic components for model i of the numerator of equation (12). zitT (�) explicitly
depends on the break fraction (�) and T , the sample size. For instance, if i=1, then
z1tT (�)′ =(1 t BCt(�)), where BCt =1, if t >TB and 0 otherwise. The vector ZiT (�, r) rep-
resents a rescaled version of the deterministic regressors, i.e. ZiT (�, r)=�iT zi[Tr]T (�), where
�iT is a diagonal matrix of weights.14 We also define the limiting functions Z0(�, r)=
(1 bc(�, r)) where bc(�, r)=1(r>�),Z1(�, r)= (1 r bc(�, r)), Z2(�, r)= (1, r,bt(�, r)),
where bt(�, r)= (r−�)1(r>�), and Z3(�, r)= (1 r bc(�, r) bt(�, r)).
Let PzT (�)= [Pz1,T (�), . . ., PzT ,T (�)] be the linear map projecting onto the space spanned

by the columns of zT (�)′ = (z1,T , . . ., zT ,T (�)), that is,
PzT (�)= zT (�)(zT (�)′zT (�)′)−zT (�)′

where (.)− denotes generalized inverse. Premultiplying byMzT (�)=(I−PzT (�)). Equation
(1) can be rewritten, in matrix notation, asMzT (�)y=MzT xt . It follows that R

f
bi (d0) is given

by

Rfbi (d0)= inf�∈�

T−2d0y′MzT (�)y
	̂2T

, for i={0, 1, 2, 3}, (29)

where 	̂2T =T−1(�d0y−�d0Z�)′(�d0y−�d0Z�).

13Notice that, for consistency of the test, it is not necessary that 
̂ or �̂0 are consistent under H1. They only need
to be bounded.
14For instance, in Model 1,

�1T =
(1 0 0
0 T 0
0 0 1

)
.
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Henceforth, only Model 1 will be considered. Proofs for models {0,2,3} are analogous
and, therefore, are omitted. For simplicity, the superscript denoting the model is dropped
hereafter.
The proof will be completed in three steps that closely follow Perron’s approach. The

first one shows that the numerator of equation (29) can be written as a functional g that is a
composition of functionals depending on XT (.) and ZT (., .). Next, some joint convergence
results are presented. Finally, it is shown that g is a composition of continuous functionals
and, therefore, it is also continuous. The proof of the theorem is completed by applying
the continuous mapping theorem (CMT).
First step. Simple algebra shows (see expression (A.3) in PE) that

T−2d0y′MzT (�)y=	2
∫ 1

0
{XT (r)−PzT (�)XT (r)}2 dr+op�(1) (30)

where op�(1) denotes a random variable that converges in probability to zero uniformly in
�, and

PzT (�)XT (r)=ZT (�, r)′[ZT (�, r)ZT (�, r)′]−1ZT (�, r)
∫ 1

0
ZT (�, s)XT (s) ds.

Thus, the statistic Rfbi (d0) can be expressed as a composite functional

inf
�∈�

T−2d0y′MZT (�)y
s2T

= g(XT ,Pzt (�)XT (r),S2T ),

where

g =h*[h(F1[XT ,Pzt (�)XT (r)], 	̂2T )],
with h*(m)= inf�∈�m(�) for any real function m=m(.) on � and, for any real functions
m1(.) and m2(.), h(m1(�),m2)=m1(�)/m2. The functional F1 is defined by equation (30).
Second step.This step establishes some joint convergence results.The followingLemma

is part of Lemma A.1 in PE.

Lemma 1. (Lemma A.1., PE) The following convergence results hold jointly

XT (.)
w→Bd0 (.), (31)

PzT (�)XT (r)
w→PZ(�)Bd0 (r)

≡Z(�, r)′
[∫ 1

0
Z(�, s)Z(�, s)′ ds

]−1 ∫ 1

0
Z(�, s)Bd0 (s) ds, (32)

and

	̂2T
p→	2.

Proof. See the proof of Lemma A.1 in PE, p. 380.

Third step. The final step is to show the continuity of various functionals.

Lemma 2. The functionals h,h* and F1 are continuous.
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Proof. Continuity of h and h* has been shown by Z&A (Lemmas A.3 and A.4) while
continuity of F1 is shown in Perron (Lemma A.2, p. 383).
The continuity of these three functionals implies that g is also continuous. This result,

combined with equations (31), (32) and the CMT imply that

T−2d0y′MzT (�)y
	̂2T

w→
inf�∈�

(
	2
∫ 1
0 {Bd0 (r)−PZ(�)Bd0 (r)}2 dr

)
	2

. (33)

For the general case where ut is allowed to present autocorrelation, using standard re-
sults it is possible to obtain that the numerator of equation (29) tends to inf�∈�(
2

∫ 1
0 {Bd0 (r)−

PZ(�)Bd0 (r)}2 dr) whereas the denominator converges to �0.

Proof of theorem 4
The numerator of Rfbi (d̂T ) can be written as(

T−2 ˆdT

T−2d0

)
T−2d0 inf

�∈�
y′MzT (�)y. (34)

If d̂T is a T �-consistent estimator of d0, with �>0, then (T−2 ˆdT /T−2d0 ) p→1, implying
that the distribution of equation (34) is given in equation (33). The denominator of Rfbi (d̂T )
is the same as that of Rf (d̂T ) and, therefore, theorem 1 applies. �

Proof of theorem 5
The proof of this theorem can be constructed along similar lines to that of theorem 2 and,
therefore, is omitted.

Appendix B
The asymptotic distributions defined in the main text have been simulated for 50 values
of d, from d=0.51 up to d=1.49 with an increment of 0.02 between each consecutive
value. The number of replications is 20,000 and the innovations are drawn from indepen-
dent Gaussian series.
The results are summarized in Tables B1 to B6 by means of the coefficients of poly-

nomial OLS regressions of the 1%, 5%, and 10% sample quantiles of the corresponding
statistic on a polynominal of degree 7, namely, (1 d d2 d3 d4 d5 d6 d7). This particular
transformation was used to obtain approximately homoskedastic errors in the polynomial
regression. This table can be used with great precision to obtain critical values for any
value of d (or d̂T )∈ (0.5, 1.5). Tables B1 and B2 present the critical values of the test
presented in section III, where R� and R
 refer to the test statistics corresponding to a
model where a constant and a constant and a linear trend, respectively, were included.
Tables B3–B6 report the critical values of the tests of structural breaks corresponding to
models 0–3.
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TABLE B1

Critical values R�(d) test

T =100 T =400
1% S.L. 5% S.L. 10% S.L. 1% S.L. 5% S.L. 10% S.L.

c 35.07 36.86 35.56 79.36 8.1555 8.222
d −207.2 −217.7 −204.8 −505.6 −518.3 −519.2
d2 534.3 563.5 516.8 1,391.2 1,427.8 1,424.2
d3 −774.2 −821.1 −733.2 −2,130.4 −2,193.3 −2,181.2
d4 677.2 723.1 628.2 1,953.9 2,020.2 2,004.5
d5 −356.3 −383.2 −323.7 −1,070.7 −1,112.3 −1,101.7
d6 104.1 112.8 92.69 324.0 338.3 334.6
d7 −13.01 −14.20 −11.32 −41.75 −43.81 −43.28

TABLE B2

Critical values R
(d) test

T =100 T =400
1% S.L. 5% S.L. 10% S.L. 1% S.L. 5% S.L. 10% S.L.

c 32.98 35.87 38.96 74.40 88.90 88.94
d −192.8 −211.6 −233.6 −471.6 −577.18 −573.5
d2 490.4 545.0 613.4 1,289.7 1,617.9 1,600.4
d3 −699.4 −788.8 −906.1 −1,962.1 −2,524.4 −2,489.2
d4 601.2 689.32 808.7 1,787.4 2,357.7 2,318.8
d5 −310.6 −362.3 −434.1 −972.8 −1,314.5 −1,290.5
d6 89.10 105.8 129.4 292.4 404.4 396.3
d7 −10.92 −13.21 16.48 −37.43 −52.34 51.72

TABLE B3

Critical values Rb0 (d) test; (Model 0)

T =100 T =400
1% S.L. 5% S.L. 10% S.L. 1% S.L. 5% S.L. 10% S.L.

c 34.14 33.15 33.68 76.91 78.71 80.84
d −206.6 −195.8 −198.2 −499.2 −508.9 −522.3
d2 544.2 503.4 508.2 1,396.6 1,420.1 1,457.0
d3 −803.4 −725.1 −730.6 −2,172.8 −2,204.9 −2,262.0
d4 714.4 629.0 633.2 2,022.9 2,049.5 2,102.7
d5 −381.4 −327.5 −329.6 −1,124.4 −1,137.7 −1,167.3
d6 112.9 94.59 95.20 345.0 348.65 357.7
d7 −14.27 −11.66 −11.75 −45.02 −45.45 −46.64
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TABLE B4

Critical values Rb1 (d) test; (Model 1)

T =100 T =400
1% S.L. 5% S.L. 10% S.L. 1% S.L. 5% S.L. 10% S.L.

c 34.25 36.14 36.29 71.67 76.37 78.31
d −208.7 −220.8 −220.3 −461.3 −493.0 −505.5
d2 552.9 587.4 582.9 1,279.8 1,372.5 1,408.0
d3 −819.9 −876.0 −864.6 −1,974.5 2,125.5 −2,182.0
d4 732.0 786.9 772.7 1,823.6 1,970.5 2,024.6
d5 −392.0 −424.3 −414.6 −1,006.0 −1,091.1 −1,122.0
d6 116.3 126.8 123.3 306.5 333.4 592.3
d7 −14.74 −16.18 −15.66 −39.74 −43.39 −44.69

TABLE B5

Critical values Rb2 (d) test; (Model 2)

T =100 T =400
1% S.L. 5% S.L. 10% S.L. 1% S.L. 5% S.L. 10% S.L.

c 36.37 37.41 37.96 73.19 78.27 78.28
d −223.2 −228.3 −230.6 −470.4 −505.0 −503.0
d2 595.8 607.1 610.7 1,303.1 1,405.2 1,395.1
d3 −890.8 −905.3 −907.4 −2,007.2 −2,175.0 −2,153.1
d4 801.9 813.5 812.7 1,850.7 2,015.9 1,991.7
d5 −433.1 −438.9 −437.1 −1,019.3 −1,115.7 −1,100.3
d6 129.6 131.2 130.4 310.0 340.9 335.7
d7 −16.56 −16.76 −16.61 −40.13 −44.32 −43.60

TABLE B6

Critical values Rb3 (d) test; (Model 3)

T =100 T =400
1% S.L. 5% S.L. 10% S.L. 1% S.L. 5% S.L. 10% S.L.

c 32.30 35.37 36.17 69.97 73.01 76.40
d −195.30 −216.9 −221.4 −449.8 −469.4 −492.9
d2 512.4 578.9 590.2 1,245.8 1,301.4 1,371.5
d3 −752.2 −865.8 −881.7 −1,918.2 −2,006.5 −2,122.5
d4 664.3 779.7 793.3 1,767.9 1,852.2 1,966.3
d5 −352.0 421.4 −428.4 −973.2 −1,021.3 −1,088.0
d6 103.3 126.2 128.2 295.8 311.0 332.4
d7 −12.96 −16.14 −16.38 −38.28 −40.31 −43.21

© Blackwell Publishing Ltd and the Department of Economics, University of Oxford 2011


