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Welcome!
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This course

Two sections

Section 1: Introduction to Panel data and Nonparametric econo-
metrics (10h)

Section 2: DAGs, causality, etc. (10h, Prof: Aleix Ruiz de
Villa)

From now on, we will focus on Section 1: Introduction to Panel
data and Nonparametric econometrics.
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Today’s Goal

1. Motivation and Overview.

2. Description of the overall logistics of the course.

3. The course itself: Introduction to panel data.
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A bird’s eye overview on (basic!) Economet-
rics in 9 questions

1. What’s the role of Econometrics?

(Order doesn’t imply relevance)

1. Prediction: Uses data on a number of variables to predict
another one.

2. Estimation and Inference: It develops and applies statistical
methods to quantify and test causal relationships between eco-
nomic variables.

This course will focus on (2).
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2. Let y be a dependent variable of interest and let X be an
independent variable.

Does correlation between y and X imply causation?

and viceversa?

Because 1) correlation and causation are two different concepts
and 2) because we’re interested in causal relationships, the goal is
to obtain estimates that can be interpreted causally.
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3. What type of function relating y and X is typically estimated by
econometricians?

E(y|X) : conditional expectation

Why so much interest placed on estimating the conditional
mean E(y|X)?

Response: Conditional expectation E(y|X) is the optimal.∗ pre-
dictor of y given X.

Consider the problem: what’s the best way of combining in-
formation on X to produce the best predictor for y, best=”lowest
mean squared error (MSE)”

Answer: E(y|X)

(but this is not always the case: quantile regression).
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4. What is the simplest model you can postulate for the conditional
expectation?

E(y|X) = Xβ

But, does the conditional expectation need to be linear?

No! in general E(y|X) = g(X) can be highly non linear As-
sumption 1: the conditional expectation of y given X is linear.

Why do we do this?

Simplicity

There’s one case where we know that the conditional expec-
tation is linear, which one?
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5. What type of (basic) model based on the above can we take to
the data?

y = Xβ + ϵ (1)

ϵ: random noise

“Chance is only the measure of our ignorance.” (Henry Poincaré,
French mathematician).

Assumption 2: E(ϵ|X) = 0

Assumption 2 demands that other variables we ignore that can have
an impact on y (which are assembled in ϵ) should be uncorrelated
with X.

Under Assumption 2, taking expectations in (1).

E(y|X) = E(Xβ|X) +E(ϵ|X) = Xβ
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6. Under Assumptions 1 and 2, how would you estimate (1)?

OLS.

(Bottom line: Econometrics would be very simple if Assumptions
1 and 2 were always true!)

7. Under Assumptions 1 and 2, what would be the (asymptotic)
properties of your estimator?

β̂ is consistent, i.e., as the sample size N → ∞

β̂N
p→β

Other good asympotic properties:

normally distributed

Under homokedasticity: BLUE
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8. Under Assumptions 1 and 2, does β̂ have a “causal” interpre-
tation?

YES!

9. And what if either Assumption 1 or Assumption 2 holds?

NO!

If Assumptions 1 or 2 fail, β̂ will be a measure of the linear
association between y and X.

Why?

If Assumption 2 fails: β̂
p↛ β

If Assumption 1 fails: what does β even mean, if the rela-
tionship between y and X is not linear?
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This course

In this (first half) of the course we’re going to estimate models
where assumptions (1) and/or (2) might not hold.

We will discuss

1) whether these are assumptions are reasonable or are too de-
manding,

2) what are the consequences of their violation and, most im-
portantly,

3) we will review some methods that will allow us to obtain
consistent estimators when these assumptions are violated.
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Overview of the course

We will depart from the above-outlined framework in two di-
rections:

Direction I

Interest in estimation methods that are valid (in certain cases)
when Assumption 2 is violated.

One of the reasons why Assumption 2 is violated is due to
omitted variables that are in the residual term and are correlated
with the X.

We will analyse how and under what circumstances the use of
panel data models solves this problem.
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Overview of the course, II
Direction II

Interest in estimation methods that are valid under mild as-
sumptions on the functional form of the relationship between y
and X, and are therefore valid when Assumption 1 is violated.

Imposing linearity and/or a specific distribution on the data are
strong assumptions

Tradeoff between efficiency and validity:

Imposing assumptions that are correct leads to more efficient
estimators

Imposing assumptions that are not true leads to inconsistent
estimators
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Non parametric estimation

Departure point: in the vast majority of cases we don’t know
the ”true” model or the “true” distribution of the data.

Approach: We will look at methods that are valid under mild
assumptions about the DGP (we won’t impose restrictions about
the DGP)

→ Non-parametric (or semi-parametric) estimators.

Note: a parametric model is known up to some parameters,
for instance: E(y|X) = Xβ

A nonparametric model is one in which the function itself is
unknown: E(y|X) = g(X)
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2. About logistics

Panel data and non-parametric estimation are very broad topics
in econometrics! This course will be a short introduction, that will
focus more on explaining the main ideas and how the models are
applied than in technical details.

10 hours with me+ 2/3 hours with the RA

Website of the course:

http://mayoral.iae-csic.org/econometrics2025/econometrics 2025.htm

Check the syllabus for information about grading, references,
etc.

please check it regularly for updates
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Introduction to Panel Data Models!
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Roadmap

1. and 2. Course overview and logistics.

3. Introduction to Panel data

4. Panel Data Models

5. Estimation of Panel data models

5. 1. Fixed Effect Models: estimation and inference

5.2. Other estimators: Random Effects Models, Pooled OLS,
Between estimator
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3. Introduction to Panel Data

What is panel data?

Data where the same individual/unit of observation is observed
several times (more than 1).

Many consecutive cross sections, where we can link units over
time.

N : the number of units (the cross-sectional dimension of the
data)

T : number of time periods (the time or longitudinal dimension
of the data).
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However, panel data refers to all data sets that span (at least)
two dimensions:

Example 1: N individuals, T years,

Example 2: N firms, T establishments.
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Why is panel data useful?

Two main advantages:

1. Helps avoiding the omitted variables bias (as omitted variables
are a common cause of violation of Assumption 2).

Why? it allows to control for unobserved characteristics that
are constant over the time dimension.

Unobserved characteristics are accounted for, not left in the
residual term (therefore, avoiding the correlation between the re-
gressors and the residual term).

2. Panel data also helps studying dynamics:

e.g. transition in and out of unemployment, mobility across
areas or firms, determinants of wage inequality over time.
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Motivation for Panel data Models:
Omitted variable Bias

Consider a (“true”) model that verifies Assumptions 1 and 2.

y = α+ βX + γη + ϵ

Assume however that the following model is estimated:

y = α+ βX + u

with u = γη + ϵ.

It follows that:

β̂
p→

Cov(y,X)

Var(X)
=

Cov(α+ βX + γη + ϵ,X)

Var(X)
= β + γ

Cov(η,X)

Var(X)
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Omitted variable bias (OVB):

If Cov (η, X) = 0, then the estimate of β̂ is consistent.

If Cov (η, X) ̸= 0, then the estimate of β̂ is not consistent.

The bias (β̂ − β) is –this is a very important formula!–:

β̂ − β = γ
Cov(η,X)

Var(X)

The sign of the bias depends on the product of two terms:

the correlation of X and the omitted variable

the coefficient of the omitted variable, η

If this product is positive, the bias is positive, β̂ will tend to be
larger than the true β

If this correlation is negative, the bias is negative, β̂ will tend
to be smaller than the true β
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An Example

Understanding this formula well is important: it will allow you
to predict the direction of the bias of your estimates!

Consider this example:

You want to estimate the impact of studying a master in data
science on wages and you have data on both variables for a repre-
sentative sample of people in their 30’s. If you regress wages on
‘master’:

What omitted variables could be in this regression?

Is it reasonable to expect that these variables are uncorrelated
with the variable “master”?

Can you anticipate the direction of the bias?
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Some examples of datasets with panel structure
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A First Classifications of Panels

1. Balanced and Unbalanced panels

2. Short and Long panels (or micro and macro panels)
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Balanced vs. Unbalanced panels.

Balanced panel: every i ∈ N has T observations.

Unbalanced panel: if the above is not true.

Example: consider a panel of countries observed over time,
developed countries tend to have all observations available, de-
veloping ones typically have some missing values for some time
periods.

For simplicity, we will typically consider balanced panels in the
following.

Methods that allow for unbalancedness are not complicated, see
Chapter 17 in Wooldridge (you will learn about sample selection
issues and attrition).
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Short vs Long panels

Short panels (micro panels): Large N , short T . Example: A
sample of individuals observed three time periods.

Long panels: Large T (N can be smaller or comparable in size).
Example: OECD countries observed at a monthly frequency for 30
years.

The techniques needed to deal with these type of datasets may
differ.

If N is the dominant dimension (short panels), asymptotics are
computed considering N → ∞, similar to cross-sectional data

But if T is the dominant dimension (long panels), asymptotics
are computed considering T → ∞ or T ,N → ∞, more similar to
time-series data

In most of the examples/methods we will consider N > T
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4. Panel Data Models
We now write the panel data models that then we will take to

the data. First distinction: linear vs. nonlinear models.

Linear panel data model, e.g.:

yit = ci +Xitβ + εit

where i = 1, . . . ,N and t = 1, . . . ,T denote the first and second
dimensions of the data. For instance, i can denote, individuals,
firms, countries, etc. and t, time (or space, or other dimensions
that the data might have).

Non linear panel data model:

yit = g(ci,Xit)

where g is a nonlinear function.
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Estimation of nonlinear panel data models presents additional
complications (due to the incidental parameters problem) and re-
quires alternative estimation approaches.

We will start by considering linear models.
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Second distinction: Static vs. Dinamic panels

Static panel data models: no lagged dependent variable in the
regression. E.g.,

yit = ci +Xitβ + εit

Dynamic panel data models: lag(s) of the dependent variable
are included in the model:

yit = ci +Xitβ + γyit−1 + εit

Introducing dynamics in the regression complicates estimation
because yit−1 is endogeneous.

Different estimation methods: GMM.
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First models we will take to the data:

Static and Linear Panel data Models

We will begin by considering linear and static models (i.e., do
not include lags of the dependent variable).

yit = ci +Xitβ + εit

Let’s focus on ci, the “novelty” in this model.

Recall that c is

1) a random variable (don’t be fooled by the name “fixed effect”!).
It’s typically assumed that it changes randomly across individuals.

2) typically non-observable. This is the case where panel data is
most useful: avoid OVB!

3) time invariant: ci (no t subindex!)
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Summarizing:

Because c changes randomly across individuals and is non-
observable sometimes we call it “unobserved heterogeneity”.

Because c is fixed over time, it’s called “fixed”;

Note: The term “Fixed effect” is typically employed in a differ-
ent context: models where c and X are allowed to be correlated.
We will go back to this below.
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5. Estimation of panel data models
We’re interested in estimating this model.

yit = ci +Xitβ + εit

with i = 1, . . . ,N , t = 1, . . . ,T .

Xit is a 1×K vector of regressors. In general, it can contain
variables that only vary over t, or over i or vary over the two
dimensions.

Assumptions made on ci are key: they determine the estimator
that should be employed.
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Assumptions on ci: alternative scenarios

First case: ci = c is constant but not observable.

Then, use “pooled OLS”, i.e., estimate everything with OLS.

No omitted variable bias, despite c being nonobservable. (Why?)

Second case: ci is random but observable.

Then, include these variables in the regression, estimate by
OLS.

No omitted variable bias. (Why?)

Third case: ci not observable and nonconstant: this is the
interesting case!
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Third case continued.

Assumptions on ci: Fixed or Random Effects

Recall: ci is random and nonobservable.

Fixed Effects models: allow for arbitrary correlation between c
and X. (Implications for OLS?)

Random Effects models: assume that the correlation between
c and X is zero. (Implications for OLS?)

Which approach do you think is more general/less problematic
and why?
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FE estimators: valid under any value of corr(Xi, c), including
zero.

RE estimators: only valid if corr(Xi, c) = 0

In theory: It’s possible to test for random or fixed effects (Haus-
man tests).

In practice: it’s complicated. The test itself relies on stringent
assumptions.

Always try to use estimators that are valid under general as-
sumptions!
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5.1. Fixed Effects Models
Recall: c random, nonobservable, c and X are allowed to be

correlated

Because they are much more general, these should be your first
choice!

yit = ci +Xitβ + εit

Main identification assumption (FE1): Strict exogeneity:

FE1 : E(εit|Xi, ci) = 0

Meaning of strict: the cond. expectation needs to be zero for
all values of t, past, contemporaneous and future values. This will
imply for instance cov(εit,Xit+h) = 0 for all h.

An additional condition: Xit cannot contain time-invariant vari-
ables, we need to drop those from the equation (we’ll see why).
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How to estimate fixed effects models?

In a nutshell: transform the model, get rid of ci, then estimate!

The idea is simple:

Panel data allows for transformations that get rid of ci from
the model. Since ci disappears from the model, we can use OLS
on the transformed model

There are different types of transformations.

First transformation: within transformation or fixed effects
transformation
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Within transformation

Step 1: Consider the FE model and average each variable over
t = 1, . . . ,T to get:

ȳit = ci + X̄iβ + ε̄i

where ȳit = T−1
∑T

t=1 yit, X̄i = T−1
∑T

t=1 Xit, ε̄i = T−1
∑T

t=1 εit

Step 2: Compute the difference yit − ȳit:

yit − ȳi = (Xit − X̄i)β + εit − ε̄i

Notice that ci disappears in the transformation!

Step 3: Estimate the resulting model by (pooled) OLS: con-
sistent, as there are not omitted variables!!
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Interpretation

In a nutshell: the fixed effect estimator is a pooled OLS estima-
tor applied on a model where all the variables have been demeaned.

Technical Note: you see here why strict exogeneity rather than
exogeneity is important: the “transformed” variables contain all
values of the variables for t = 1, ...T , not only the contemporaneous
one

Therefore, X cannot include time-invariant variables. (Why?)

After demeaning, time invariant variables will become a vector
of zeros in the matrix X. Then, that matrix will become non-
invertible!

This is in fact a second identification condition:

FE2 : rank((X − X̄)′(X − X̄)) = K
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Interpretation of the coefficients is key: they are identified by
only looking at the within variation of the data.

Notice that the within transformation removes all differences
across the units: all of them have the same mean, equal to zero.

Therefore, all the variation employed for identification comes
from within-units.
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Asymptotic Propierties of the FE estimator

Recall β̂FE = (X̃ ′X̃)−1X̃ ′ỹ, where the “∼” denotes that the
data has been demeaned.

Under FE1 and FE2, as N → ∞ and fixed T

β̂FE is consistent and asymptotically normal:

N−1/2(β̂FE − β)
d→ N(0,Avarβ̂FE)

where Avarβ̂FE denotes the asymptotic variance of β̂FE (the spe-
cific shape will depend on assumptions about heteroskedasticity
and serial correlation).
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Example

How does joining a union affect a worker’s wage?

Setup:

• We have panel data on workers over multiple years.

• Each worker i is observed for t = 1, 2, . . . ,T time periods.

• Let wit be the log wage of individual i at time t.

• Let unionit be an indicator that is 1 if worker i is a union
member at time t, and 0 otherwise.

• There are unobserved, time-invariant characteristics (e.g. in-
nate ability, ambition) that might affect wage levels.
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A naive “pooled OLS” model could be:

wit = β0 + β1 unionit + uit.

But: only consistent if 1) individuals are identical (so β0 can
capture unobserved effects) OR if the unobserved effects are un-
correlated with joining an union.

Fixed Effects model:

wit = ci︸︷︷︸
time-invariant FE

+ β1 unionit + εit,

where ci is a worker-specific intercept capturing all time-invariant
traits of individual i.
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The Within Transformation (“De-meaning”)

(wit −wi) = β1 (unionit − unioni) + (εit − εi).

Interpretation of the Within-Estimator Coefficients:

• β1 measures how log wage changes for the same individual
when that individual switches from being non-union to union.

• β1 is identified by those individuals who change their union
status at least once during the panel. Individuals who are
always union or never union provide no within variation to
identify β1.
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Key Takeaways

Fixed effects estimator: can deal with unobserved heterogene-
ity, correlated with the X’s.

Modus operandi: 1) demean all variables, 2) apply OLS

Interpretation: We exploit only within-individual (or within-
unit) variation over time.

Time-Invariant Factors Are Removed: Any unchanging traits
such as innate skill or background are taken out by “de-meaning”
each person’s data.
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Alternative Approaches for estimating models with Fixed
Effects

Two additional approaches:

First differencing estimator: transforms the model to get rid of
ci by taking first differences

Dummy-variable estimator: estimates ci by including dummies
for each individuals.
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Alternative approach I: Dummy-variable estimator

This estimator treats ci as parameters to be estimated.

How? Include dummy variables Di in the model so that for each
i, Di is 1 for the T values of i and zero otherwise.

Using the partioned regression formula, it can be shown that
the dummy variable estimator yields identical values as the fixed
effect estimator.

How about the ci’s? The estimator also provides estimates for
these parameters, in contrast to the FE estimator.

However, notice that in the case N → ∞ and T fixed, (short
panels) the estimator is not consistent, ci grows as the same speed
as N so we don’t accumulate knowledge on the c′ as N grows, as
new parameters appear→ The incidental parameter problem.
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ĉi are inconsistent in short panels.

If T is sufficiently large, we can obtain the estimated c′s, plot
the distribution and have a relatively precise idea of the degree of
heterogeneity in the distribution.

Drawback: expensive computationally if N is large.

Most statistical packages don’t report directly the ”c”’s, but
it’s very easy to obtain them by running an OLS regression with
dummies as explained above.

Alternatively, if you’ve used the within estimator, you could also
obtain these values

Once you’ve estimated the model, combine the averages
(over t) of the original data and the estimated β to get

ĉi = ȳi − X̄iβ̂

(same problems apply of course!)
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Alternative approach 2: First differencing methods

Idea: get rid of ci by taking first differences in the model, i.e,
∆yit = yit − yit−1

Recall the model:

yit = ci +Xitβ + εit (1)

yit−1 = ci +Xitβ + εit−1 (2)

Compute (1)-(2) to obtain:

∆yit = ∆Xitβ + ∆εit

ci has disappeared!
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Comparison FE and FD estimators

If T=2, both yield the same β̂

If T > 2, then they can be different.

Choosing one or the other hinges on assumptions on the persis-
tence of the serial correlation of the error term. (See Wooldridge,
10.7.1)

Under (very unrealistic) assumptions of i.i.d. residuals, FE es-
timator is more efficient.

In applied work, the FE is typically more applied/reported.
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Tradeoffs of using FE models
FE models are great to avoid OVB (if OV are time invariant)

But there are some tradeoffs:

1. If there’s measurement error in the data, it can become
worse (therefore, it can have a larger impact on the estimates)

2. By demeaning the variables, it can also eliminate variation
in the data that is ”good” and therefore, estimates can be much
less precisely estimated.

We will see these points in two examples

0-52



Example

Studying the Effects of Unions on Wages

Freeman (1984) studies the effect of unions on wages.

Identification is tricky in this problem due to many potential
omitted variables.

He provides a comparison of estimates using OLS in cross sec-
tion and FE.
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Studying the Effects of Unions on Wages

Cross sectional analysis delivers higher coefficients.
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Comparing Cross-Section to Panel Results

A potencial explanation: OVB is positive, i.e., Cov(εit, ci) ≥ 0,
γ > 0 (or both negative).

Can you think of omitted variables that could create this cor-
relation?

However, there is another suspect: Measurement Error
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Comparing CS to Panel: Measurement Error

The use of FE models can typically worsen measurement error.
Why?

The variation in the data is typically due to two terms: the
”true” variation and potentially, the variation induced by noise or
measurement error.

When transforming the data to get rid of c, the “true” variation
in the data decreases (we’re removing all the between variation!).
However, the within transformation doesn’t get rid of the noise.

As a result, the measurement error becomes relatively larger:
the signal-to-noise ratio decreases.

Recall that (classical) measurement error leads to biased coef-
ficients. The bias is always towards zero (attenuation bias).

As the measurement error is larger, attenuation due to it can
also be larger.
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Second tradeoff: FE can eliminate “good” variation in
the data

Example: Class Size and Test Scores

• Research Question: Does smaller class size improve test
scores?

• Cross-Section OLS:

TestScores = α+ βClassSizes + us

– Uses variation across schools (some large, some small).

– Often finds a negative relationship:

β̂ < 0 (larger classes → lower test scores).
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Consider now panel data on schools and introduce school
FE:

TestScores,t = αs + βClassSizes,t + us,t

Controls for time-invariant differences across schools (good to
control for school level omitted variables!).

Identification now relies on within-school fluctuations over
time.

Outcome:

• Variation in class size within each school (e.g., 25.5 to 24.8)
may be small.

• This can lead to a smaller (or less precise) estimate of β.

• Large cross-sectional differences are no longer exploited, hence
“chewed up” by fixed effects.
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Two-way fixed effects
The two-way fixed effects model extends the standard FE ap-

proach by controlling for unobserved heterogeneity across two di-
mensions: individuals (or entities) and time periods.

yit = ci + λt +Xitβ + εit,

where

• ci: Individual-specific fixed effect.

• λt: Time-specific fixed effect.

λt captures shocks or trends common to all individuals in period
t (e.g., economic changes, changes in policies, etc).

0-59



Estimation Methods for TWFE models

• Dummy Variable Approach: Include dummy variables for
each individual and each time period.

• Within Transformation: Demean the data by subtracting
individual and time averages to remove fixed effects, avoiding
a large number of dummy variables.
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Example

Consider analyzing the impact of job training programs on
wages:

Wageit = αi + λt + β1Trainingit + εit.

- αi: Controls for innate ability/other individual-specific factors.

- λt: Controls for year-specific economic conditions.

- This specification isolates the effect of Trainingit on Wageit by
accounting for unobserved individual and time-specific influences.
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More generally:

You can construct models with a lot of different types of FE.

An example: you have panel data on conflict at the country
level over a number of months and want to study the impact of a
country-level variable that varies over time. In addition to country
FE, you can write models that contain

1) month FE: control for global trends

2) region-specific month FE: you let the month FE to change
across regions/continents (because the trends can differ across
regions)

3) country-specific decade -FE: you allow for unobserved factors
that create slowly moving trends that are country-specific.

. . .
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Estimating FE models in practice
You can estimate FE models using the software you prefer

(STATA, R, Python . . . )

Many economists use STATA, you will find a lot of examples,
papers, replication packages written in STATA.

See the website of the course for useful resources/examples.
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Example: FE with stata

Author: Oscar Torres-Reyna. Tip: use cluster s.e. (i.e., replace
“robust” by vce(cluster country))
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Inference in Fixed Effect Models
Within Estimator

Many text books devote considerable time to “efficiency” re-
sults (=whether this or that estimator has the smallest variance).

Problem: these results are developed under very unrealistic as-
sumptions! therefore they are not very useful.

For instance, consider this assumption:

FE3 : V ar(εi|Xi, ci) = σ2
εIT

where IT is the T × T identity matrix.
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Within Estimator: Inference, II

FE3 assumes two things:

1) Homokedasticity and

2) lack of serial correlation.

Are these good assumptions?

NO! they are very demanding

Bottom line: never consider FE3 to be true in applications!
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Robust Standard Errors

Robust standard errors= standard errors that take into account
that there could be heteroskedasticity in the residual term.

Always suspect heteroskedasticity in any regression you run (it’s
straightforward to compute s.e. that are robust to that).

Under heteroskedasticity:

FE3′ : Var
(
εit | Xi, ci

)
= σ2

ε,it > 0, finite,

and (no serial correlation)

Cov
(
εit, εis | Xi, ci

)
= 0 ∀ s ̸= t.
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Heteroskedasticity-Robust (Eicker–White) Variance:

V̂ar(β̂) = (X ′
withinXwithin)

−1

∑
i,t

ε̂ 2
it Xwithin,it X

′
within,it

 (X ′
withinXwithin)

−1,

where
Xwithin,it = Xit − X̄i, ε̂it = ε̃it.

Interpretation:

• This adjusts for any form of heteroskedasticity in εit.

• It does not account for correlation across t within each i (i.e.,
no clustering).

• In software, this is often labeled robust or HC standard errors
without clustering.

Is this “enough” to get reasonable standard errors?

In most instances, it’s not
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Clustered standard errors

When using panel data you also have to suspect serial correla-
tion! why?

We might assume that individuals are i.i.d. across themselves,
but this assumption doesn’t make sense within-individuals.

Since an individual is correlated with herself over the T ob-
servations → serial correlation we need to account for this in the
standard errors.

clustered standard errors: s.e. developed under the assumption
that within-individuals there could be arbitrary correlation. This
allows for serial correlation AND heteroskedasticity.
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In this case FE3 becomes:

FE′′ : Var
(
εi | Xi, ci

)
= Ωε,i(Xi),

which is positive definite (p.d.) and finite.

FE” is good because s.e. derived under this assumption are
also valid under FE and FE’ !

Under FE” you should compute clustered robust standard er-
rors.

This type of s.e. allow for heteroskedasticity AND within serial
correlation.

For more details on the computation of these s.e. see the notes
in the website of the course.
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5.2. Other estimation approaches
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5.2. Other estimation approaches for panel
data models

All the methods that we’ll see now DO NOT allow for corre-
lation between the regressors and the fixed effects.

As a result, they cannot help solving the OVB as FE can!

They are only appropriate under stringent assumptions over ci.
Let’s revise them quickly.

1. Pooled OLS

2. Between estimator

3. Random Effects
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Pooled OLS
The model:

yit = c+Xit + εit (1)

c is assumed to be constant, therefore corr(c,Xi) = 0

This method ignores the panel structure of the data

As mentioned earlier, OLS can be employed.

Xit can contain time invariant variables; c can be estimated
consistently (as opposed to FE!)

(
ĉPOLS

β̂POLS

)
= (W ′W )−1W ′y,

where W = [ιNT X ] and ιNT is an NT × 1 vector of ones.

But, big drawback: everything depends on ci = c being constant
across i (very stringent assumption).
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Between Estimator
Pooled OLS vs. Between Estimator

• Pooled OLS uses variation over both time and cross-sectional
units to estimate β.

• Between Estimator uses just the cross-sectional variation.

How it works: consider the individual-Specific Effects Model:

yit = ci +Xitβ + εit.

Average the data over time (t = 1, . . . ,T ), it gives

yi = ci +Xiβ + εi,

which can be rewritten as the between model:

yi = c+Xiβ +
(
ci − c+ εi

)
, i = 1, . . . ,N ,
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where yi =
1

T

T∑
t=1

yit, Xi =
1

T

T∑
t=1

Xit, εi =
1

T

T∑
t=1

εit.

Between Estimator:

• OLS regression of yi on an intercept and Xi.

• Uses variation between individuals; analogous to cross-section
regression (special case T = 1).

• Consistent if Xi is uncorrelated with
(
ci − c+ εi

)
• Inconsistent under fixed effects if ci is correlated with Xit and

hence Xi.
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Random Effects Models

• Consider the individual-specific effects model:

yit = ci +Xitβ + εit,

Random effects: ci and εit are uncorrelated.

• It would be possible to estimate this by pooled OLS (it is
consistent)

• But notice that ci is in the error term: heterokedasticity!

• Therefore, feasible GLS improves efficiency under the RE
model.
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Random Effects: Key Assumptions
Model Setup:

yit = ci +Xitβ + εit,

where ci is unobserved and εit is idiosyncratic.

Assumption RE.1:

(a) Strict exogeneity:

E(εit | Xi, ci) = 0 for all t.

(b) Orthogonality between ci and Xi:

E(ci | Xi) = 0.

Why RE.1?

• Allows treating ci as part of the error term.

• Ensures strict exogeneity needed for consistent GLS.
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Random Effects: Estimation Procedure
Error Structure:

vit = ci + εit, with W = E(viv
′
i) = σ2

εIT + σ2
c1T1

′
T

W =


σ2
c + σ2

ε σ2
c σ2

c · · · σ2
c

σ2
c σ2

c + σ2
ε σ2

c · · · σ2
c

σ2
c σ2

c σ2
c + σ2

ε · · · σ2
c

...
...

...
. . .

...
σ2
c σ2

c σ2
c · · · σ2

c + σ2
ε


T×T

.

The matrix W has the random effects structure, depending on two
parameters: σ2

c and σ2
ε .
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Assumptions for Efficiency:

• RE.2: Rank condition for consistent GLS: rank(X′
iW

−1Xi) =
K

• RE.3: Constant conditional variances and homoskedasticity
of ci.

(a) E
[
(εiε

′
i) | Xi, ci

]
= σ2

ε IT .

(b) E
[
c2i | Xi

]
= σ2

c .
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Estimation Steps:

1. Use pooled OLS to get an initial consistent estimate β̂POLS.

2. Compute residuals v̂it and estimate σ2
ε and σ2

c . [Check Wooldridge,
page 734 for details]

3. Form the feasible GLS weight matrix

Ŵ = σ̂2
uIT + σ̂2

c1T1
⊤
T .

4. Obtain the Random Effects estimator:

β̂RE =
( N∑

i=1

X⊤
i Ŵ−1Xi

)−1( N∑
i=1

X⊤
i Ŵ−1yi

)
.
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Properties:

• Two-step FGLS procedure.

• Consistent under RE.1 and rank conditions.

• Efficient under Assumptions RE.1–RE.3.

Variations:

• If RE.3 doesn’t hold and there’s heteroskasticity: use robust
s.e. (sandwich variance-covariance matrix)

• Efficiency is lost if RE.3 fails

• You should always allow for deviations from RE.3 and com-
pute standard errors accordingly, therefore efficiency is lost.
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RE or FE models?
Recall: RE assumes that the correlation between regressors

and ϵ is zero. Therefore, it assumes away the OVB problem!

Under this assumption +homokedasticity, RE is more efficient
therefore “in theory”, it could be a preferable option

In practice: this is not true, as the assumptions are too strin-
gent.

Results obtained using the RE estimator are much less credible;
use FE models instead.

In theory, it’s possible to test for FE vs RE (Hausman test)

But in practice, the test is only valid under very stringent as-
sumptions (homokedasticity, cannot include time dummies), so not
very reliable either.

Bottom line: FE models should be your default option!
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RE or FE models?, II
Hausman Test

Logic of the test:

If the RE assumption is true (H0), both the RE estimator and
the FE estimators are consistent.

if it’s false, only the FE model is consistent (H1).

Therefore, under H0, the difference between the RE and the
FE estimators should be small. Under H1, it should be large.

The test rejects the null hypothesis if there are large deviations
between the FE and the RE estimators.
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The test is typically run under RE.3: Constant conditional
variances and homoskedasticity of ci.

Under this assumption and if H0 is true: both RE and FE esti-
mators are consistent, but RE is efficient.

This helps finding the asymptotic distribution of the test

H = (β̂1,RE − β̂1,FE)
′ (V̂ [β̂1,FE ]− V̂ [β̂1,RE ]

)−1
(β̂1,RE − β̂1,FE) (1)

where V(.) denotes the variance of the relevant estimator.

Under R3.1–RE.3 if H0 is true: asymptotic distribution: χ2.

The test rejects H0 (RE) if the value of the test is larger than
the χ2 critical value.
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Important caveat: the asymptotic distribution of the test typi-
cally assumes RE3 holds (homokedasticity).

If RE3 doesn’t hold but the test is run as it did, the test has a
nonstandard limiting distribution (i.e., it’s not χ2). Then: wrong
conclusions!

It’s possible to apply robust options: always do that! (RE3 is
too stringent)
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Key Takeaways
This handout introduces the basics of panel data models

Advantage of panel data: allow to control for unobserved, time-
invariant, heterogeneity across the units

General tips:

Use FE models estimated within, FD or dummy variable ap-
proach

Other methods, such as RE, pooled OLS, between estimator,
are not consistent in the general case!

Use s.e. that are valid under general assumptions: clustered
s.e.
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Be careful with the interpretation of these models (they exploit
within-unit variation exclusively!)

The use of panel data models also has drawbacks

Measurement error problems can become more acute

Useful variation can be eliminated by the FE: estimates can
be estimated very imprecisely, large s.e., etc.
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