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1. Introduction

Goal: estimate the relationship between y and x without im-
posing a functional form.

→ the same, in more technical words:

Nonparametric estimation of the conditional expectation.

The conditional expectation of Y conditional on X (a univariate
variable) at x0:

E[Y |X = x0] = m(x0)

m(.) is not specified.
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In this lecture we will develop nonparametric regression tech-
niques

We will start by considering that X is a scalar variable (recall
the curse of dimensionality)

These nonparametric methods are local averaging methods: es-
timates are obtained by cutting the data into ever smaller slices as
N → ∞ and estimating local behavior within each slice.

In a nutshell: for each point x0 those estimators are weighted
(typically, kernel weights) local (=in a neighbor of x0) averages of
values of y
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An introductory example

Consider the relationship between hours worked per day and
hourly wage (simulated data we created in handout1)

We run an OLS regression and get a very positive relationship
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However, plot the data: highly nonlinear relationship
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We could estimate two lines, one for the increasing part of the
relationship and one for the decreasing one:
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Or we could even consider more regression lines, (i.e., a smaller
”bandwidth”)
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The previous methods will work if we know the breaking points
(we’re imposing them when running the OLS regressions).

Nonparametric methods share a similar spirit: they are local
averaging methods.

No need to impose any breaking points as in this example!

estimates are obtained by cutting the data into ever smaller
slices as N → ∞ and estimating local behavior within each slice.
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Parametric versus Nonparametric methods:

Asymptotic properties are quite different

Lower convergence rates: because of local averages (less than
less than N observations in estimating each slice)

In simplest cases still asymptotically normally distributed;

Due to lower convergence rates, biases appear

Things become in general a bit “uglier” and properties are a
bit ”less nice” than in parametric estimation, so be a bit patient!
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1.2. Some simple visualization tools

Scatterplot

Before we begin with the complicated stuff, let’s always look
at the data first!

Consider this example: The relation between tenure on the job
and hourly wage.

DATA (example STATA: sysuse nlsw88)

Simplest visualization tool: scatterplot
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What can you say about the relationship between wage and
tenure by looking at this graph?

Not much!

scatterplots are not very useful for large data sets

0-9



A better way of plotting the data: binned scatter plots

If a lot of data points: scatter plots are not very useful (clouds
of millions of points! impossible to see anything)

Binned scatters: very useful visualization tools, particularly for
large datasets

Compare the scatter and the binned scatter plot (on same data)
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The second graph is much more informative that the first one
about the shape of the conditional expectation.

From the second graph, you can easily see that

There’s a positive relationship between tenure and wage

This relationship seems to be pretty linear

What’s the magic?
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The second graph is much more informative that the first one
about the shape of the conditional expectation.

From the second graph, you can easily see that

There’s a positive relationship between tenure and wage

This relationship seems to be pretty linear

What’s the magic?

Binned scatter plots are visual, simple, nonparametric estimators
of the conditional expectation.
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How they work (from STATA help)

STATA command: Binscatter

groups the x-axis variable into equal-sized bins (number of bins
to be determined by you, default empirical ventiles)

computes the mean of the x-axis and y-axis variables within
each bin (median is also an option)

then creates a scatterplot of these data points.

The result is a non-parametric visualization of the conditional
expectation function.

0-13



Let’s see this graphically
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Additional options of the binscatter command Plot the
data conditioning by different values of other variable

1. You can plot the data for values of other variable.

For instance, by race

binscatter wage tenure, by(race) nq(50)
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Control for other variables

2. You can control for other variables that you might think are
relevant.

Control for age.

binscatter wage tenure, control(age) nq(50)
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How does binscatter deal with control variables?

Method inspired by a famous theorem in regression analysis:
The Frisch-Waugh-Lowell Theorem

Binscatter residualizes the x-variable and y-variables on the
specified controls before binning and plotting.

That is,

regress y/z, save residuals, e1, add mean of y to e1, obtain e′1

regress x/z, sav residuals, e2, add mean of x to e2, obtain e′2

Plot e′1 on e′2

This is in fact trickier than it looks and not so ”safe”: only
valid if conditional expectation is linear
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An improved approach to binned scatterplots:
Cattaneo et al., 2024

A very recent paper improves on traditional methodology (pub-
lished May 2024!): Cattaneo et al (2024)

The “traditional” approach of residualizing first the data only
justified when the conditional expectation is linear.

Otherwise: don’t do it!

This paper also provides:

Ways of doing inference

Optimal binning selection

0-23

https://mdcattaneo.github.io/papers/Cattaneo-Crump-Farrell-Feng_2024_AER.pdf


We’ll go back to this paper when we study semiparametric
methods (partially linear model)

But you can install the stata package to play with it in the
meantime:

STATA package: binsreg
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STATA code to generate this example:

Load data in stata memory:

sysuse nlsw88

keep if inrange(age,35,44) & inrange(race,1,2)

keep if inrange(age,35,44) & inrange(race,1,2)

scatter wage tenure, graphregion(color(white)) lwidth(thick)

binscatter wage tenure, nq(50)

binscatter wage tenure, control(age) nq(50)

binscatter wage tenure,by(race) nq(50)
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Takeaways
Always start by plotting your data

Binned scatterplots are very useful tools, particularly when
there are a lot of data points

Visual and quick estimator of the conditional expectation

Quite flexible stata command, allows to eliminate impact of
other variables (linearly) (but notice the limitations of this, only
valid under linearity!)

But binscatter is not enough! (no inference, a bit too crude...)

New binned scatter technique: Cattaneo et al, (2024) –to be
reviewed soon.
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Overview of the handout

The remaining of this handout: Different approaches to carry
out nonparametric regression.

Different methods: Kernel local (constant) regression; Local
linear/polynomial regression; Lowess, . . .

Intuition is simple, technical stuff becomes complicated

We will look at

1) Intuition;

2) implementation;

3) differences across the methods; etc

4) stata tips (more on this in the TA session);
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Roadmap of this handout

1. Introduction: Nonparametric Local Regression;

1.2. Some simple visualization tools

2. Local Weighted Averages

3. Kernel Local Regression: implementation, properties

4. Local Linear Regression

5. K-Nearest Neighbor

6. Lowess
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2. A bif of intuition: Local Weighted Averages

Model:

yi = m(xi) + ϵi, i = 1, . . . ,N , ϵi
iid∼ (0,σ2

ϵ ). (1)

and E(ϵ|x) = 0.

Under these assumptions, the conditional expectation is

m(x0) = E(y|x = x0). (2)

Problem:

m(.) unspecified → use nonparametric methods to estimate it at
a point x0
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A bit of intuition about local average estimators

Suppose that at x0, there are multiple observations on y, say
N0 observations.

A simple estimator for m(x0) is the sample average of these N0

values of y.

m̂(x0) =
N0∑
i=1

wiyi

where wi = 1/N0 if x = x0 and 0 otherwise.

Notice that (for fixed x0):

m̄(x0) ∼
(
m(x0),

σ2

N0

)
, (3)

Why? it is the average of N0 observations that are i.i.d with
mean m(x0) and variance σ2

ϵ .
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The estimator m̄(x0) is unbiased but not consistent (in general)

Why? Consistency requires N0 → ∞ as N → ∞, so that
V [m̄(x0)] → 0.

But N0 can be really small, particularly for continuous vari-
ables! (most likely, just one observation of y)

Then:

The Problem of this approach: not enough observations to
average (N0 can be too small, it can even be 1 for continuous
variables even with a huge sample!)

A Solution: consider averages of y when x is close to x0, (in
addition to when x exactly equals x0).
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Local weighted average estimator:

a weighted average of the dependent variable in a neighborhood
of x0.

m̂(x0) =
N∑
i=1

w(xi,x0,h)yi

where the weights w(xi,x0,h) sum to 1 and vary with :

the sample values of the regressors, xi

the evaluation point x0

the value of h, i.e., the length of the window around x0
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Note: The OLS estimator has a “similar” structure

This estimator is not “that different” from those you’ve used
in the past!

Recall that the OLS estimator is also a weighted average of yi,
since some algebra yields

m̂OLS(x0) =
N∑
i=1

1

N
+

(x0 − x̄)(xi − x̄)∑
j(xj − x̄)2

yi

The OLS weights are different though:

Local regression uses weights that are decreasing as xi gets
far away from x0 (if, for example, xi > x0 > x̄)

OLS weights don’t verify this, in fact, weights can even in-
crease with increasing distance from x0
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Back to the local weighted average estimator

h: bandwidth parameter. Smaller values of h → smaller window
→ more weight being placed on those observations with xi close
to x0.

2h: window width

The most common weight functions are:

1. Kernel weights

2. Lowess

3. k-nearest neighbors

Modus operandi: compute m̂(x0) at a variety of points of x0 to
obtain a regression curve.
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3. Kernel regression: Nadaraya-Watson (NW)
estimator

Recall the Model:

yi = m(xi) + ϵi, i = 1, . . . ,N , (4)

E(ϵ|x) = 0,

E(ϵ2|x) = σ2(x)

.

Recall the Goal: Estimate of m(x0),

m(x0) = E(y|x = x0). (5)
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Let’s now analyze the case where we use Kernel weights

Kernel regression is a weighted average estimator using kernel
weights.

Consider again the local weighted average estimator, where we
compute the average of the y’s in an interval of length 2h around
x0

m̂(x0) =

∑N
i=1 1(|

xi−x0
h

| < 1)yi∑N
i=1 1(|

xi−x0
h

| < 1)

The numerator: sums the y’s in the interval (x0 ± h)

The denominator: gives the total number of y’s that have been
summed in the numerator
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Thus: the previous expression is an average of the y’s with
equal weights (weights are relative frequency of y in the window)

Consider instead Kernel weights

Why?

non-constant weights

give more weight to observations close to x0

Kernel Regression Estimator

m̂(x0) =

∑N
i=1 K(xi−x0

h
)yi∑N

i=1 K(xi−x0
h

)

(also called Nadaraya-Watson estimator)

similar Kernels as before: Gaussian, Epanechnikov, etc.
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Example: Nadaraya-Watson estimator for the hours worked
/wage problem

(stata defaults for h, kernel... –we’ll learn about them)

lpoly y x , ci msize(small) graphregion(color(white))
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Implementation of the NW estimator

1. Kernel choice

Kernel choice: MISE(h∗) is minimized by the Epanichnikov
Kernel (as before)

but small differences across kernels for optimal h∗

Choice of bandwidth is much more important than choice of
kernel
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Implementation of the NW estimator, II

2. Bandwidth choice

Optimal bandwidth: recall the tradeoff between bias&variance
in the choice of h.

Optimal bandwidth: trades off bias (minimized with small band-
width) and variance (minimized with large bandwidth)

Recall the trade-off:

Incorporating values of yi for which xi ̸= x0 into the weighted
average introduces bias, since E[yi|xi] = m(xi) ̸= m(x0) for xi ̸= x0.

However, using these additional points reduces the variance
of the estimator, since we are averaging over more data.
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The optimal bandwidth balances the trade-off between increased
bias and decreased variance, using squared error loss.

Variance=O((Nh)−1); bias=O(h2)

Theory just says that the optimal bandwidth (=the one that
minimizes MISE) for kernel regression is O(N−0.2) (but this is use-
less for choosing h in applications). Why this value: makes the
squared bias and the variance of the same order of magnitude.

In practice: plug-in estimator of the optimal h using MISE(h)
is complicated now (estimation of the plug-in estimation requires
estimation of m′′(x), second derivative of conditional expectation
which is difficult to estimate).

Alternative: Cross-validation, computationally intensive, but
easier to implement
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Choosing the bandwidth: Cross-validation

Cross-validation is a popular techniques for many prediction
problems

Cross-validation, in general:

Construct prediction models that perform well out of sample

Simple idea:

we split the data in two sets: training set and validation set

Use the data in the training set to construct the estimator.

Using this estimator, predict the “out of sample” observa-
tions, i.e., the obs. in the “validation set”, calculate the error.

Choose the estimator with best out of sample performance
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Why leaving some observations out?

Avoid overfitting:

an estimator that is very good for the in-sample data but can
perform badly for non-seen observations

why is that? because in a dataset there’s always noise. If
we perfectly fit that data, we fit both the “signal” (what really
matters in the data) AND the noise, something that is pure random
variation.

Since the noise changes in every realization of the data, a
model that fits very well a dataset can perform badly out of sample
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Cross validation, in particular:

Goal: use cross-validation to choose a value of h that yields a
good estimate m(x)

Idea

For each observation i, compute an estimator mi using cross-
validation i.e., using a “training sample” to compute the estimator

...and a validation sample only used to compute out of sample
prediction error

Then, choose h that yields smallest MSE.
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How it works (a bit simplified):

1. For each i, define the training sample as all the observations
except obs. i; validation sample: observation i

2. The estimator leaving i out is given by

m̂−i(h,xi) =
∑
j ̸=i

wj,hyj/
∑
j ̸=i

wj,h

3. Compute CV(h) (very similar to the MSE(h))

CV (h) =
n∑

i=1

(yi − m̂−i(xi))
2
π(xi), (6)

π(xi): weights introduced to potentially downweight the end
points, to prevent those points to receive too much attention (local
weighted estimates can be quite highly biased at the end points)
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4. h∗
cv is chosen as the value that minimizes the CV(h)

5. In practice CV(h) is computed over a range of values of h.
Choose the value of h that makes it smallest.

Properties of ĥcv: converges to h∗ (optimal h), but slowly (≈
low convergence rate)
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Takeaways

In Kernel regression, cross-validation tends to perform better
than the plug-in estimator

Logic of Cross-validation: choose the h that minimizes the (out
of sample) mean prediction error

Why leaving one observation out at a time?

nonparametric methods are very flexible, and if we consider
the whole sample, we can get an almost “perfect fit”

⇒ Overfitting!
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Statistical Properties of Kernel regression es-
timators

1. The Kernel regression estimator is consistent

m̂0 is consistent if some conditions on h and Nh hold

Recall: these conditions are needed for developing the theory;
not informative to choose the value of h in practice

The estimator is consistent provided:

h → 0: i.e., substantial weight is given only to xi very close
to x0.

AND

Nh → ∞: i.e., there’s “many” xi close to x0 as n → ∞, so that
many observations are used in forming the weighted average.
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2. The Kernel regression estimator is biased in finite
samples

It can be shown that

m̂(x0) = m(x0) +O(h2)

Asymptotically, the bias tends to zero under the assumptions
above (i.e. if h tends to zero)

However, the bias can be substantial in finite samples

Particularly, at the end points (where few observations exist)

When considering confidence intervals, the estimate is centered
in the true value of m plus the bias!
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3. The Kernel regression estimator is asymptotically
normal

Rate of converge:
√

(Nh): smaller than the usual
√

(N)

Asymptotic distribution (notice the bias!)

√
Nh(m̂(x0)−m(x0)− b(x0)) → N

(
0,

σ2
ϵ

f (x0)

∫
K(z)2dz

)
(7)

Notice that f (x0) appears in the denominator

This implies that the variance term in is larger for small f (x0),
i.e., when there’re few ’x’s in the neighborhood of x0, which makes
sense
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Constructing Confidence Intervals

Estimates of m(x0) typically are provided with CI

How can we compute them?

1. Use the asymptotic distribution above ignoring the bias. Then:

m(x0) ∈ m̂(x0)± 1.96

√
1

Nh

σ̂2
ϵ

f̂ (x0)

∫
K(z)2dz

But two problems

Problem 1 Convergence to the normal distribution is slow (recall
the lower convergence rates)

Problem 2 Forgetting the bias means that the CI are not centered
correctly!
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Solutions.

Problem 1. Don’t use the asymptotic distribution, instead use
bootstrap (i.e., a method that approximates the finite sample dis-
tribution)

Problem 2. Reduce the bias:

a) Undersmoothing

b) using higher order Kernels (Fourth-order, Gaussian Fourth-order
quartic): the bias when these kernels are employed are O(h4)

c) Use alternative methods that are less biased: Local polynomial
regression, Lowess . . . (smaller bias)

For instance, you can use bootstrad AND undersmoothing
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Trimming

Recall the definition of the NW estimator:

m̂(x0) =

∑N
i=1 K(xi−x0

h
)yi∑N

i=1 K(xi−x0
h

)

Notice that the denominator is f̂ (x0), the kernel density esti-
mator.

Problem : For some xi, f (xi) can be very small (i.e., values
that are unlikely). Since the estimate of the density appears in the
denominator, this can lead to a very large value (in abs. value) of
m̂(xi).

Such problems are most likely to occur in the tails of the dis-
tribution.
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Trimming: eliminates or greatly downweights all points with
f (xi) < b , say, where b → 0 as N → ∞.

For nonparametric estimation one can just focus on estima-
tion of m(xi) for more central values of xi ,

However, the semiparametric methods of Section 9.7 can en-
tail computation of m(xi) at all values of xi , in which case trimming
is typically employed.
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Example

DATA: PSID Individual Level Final Release 1993 data, (www.isr.umich.edu/src/psid
then choose Data Center )

Relation between years of completed education and (log of)
wages

Females in their 30’s

Data from Cameron and Trivedi
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OLS regression:

highly significant role of education;

interpretation : marginal effect
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OLS regression:

highly significant role of education;

interpretation : marginal effect

an increase in one year of education increases by 10% hourly wage.
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But...is the linearity assumption reasonable?

Let’s plot the data (scatter plot)

twoway scatter lnhwage educatn, graphregion(color(white))
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Binned scatter plot

STATA: binscatter command

binscatter lnhwage educatn, nq(20)

binscatter lnhwage educatn, nq(20) line(qfit)

(first graph imposes a linear fit on the data, second is more flexible,
allows for a quadratic one)
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Nonparametric regression in STATA

The lpoly and npregress commands

STATA has several commands to do nonparametric regression:
lpoly, npregress (the latter has more options)

lpoly: Kernel-weighted local or polynomial smoothing

Less options than npregress

Very easy to use
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npregress kernel:

From Stata 15 onwards: a new command, npregress

Determines bandwidth by cross-validation whereas lpoly uses
plug-in value

Evaluates at each xi value (whereas lpoly default is to evaluate
at 50 equally spaced values)

For local linear, computes partial effects.

Can use margins and marginsplot for plots and average partial
effects.

Can deal with more than one regressor.

we’ll see an example in a few slides
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Example

lpoly lnhwage educatn, ci

(STATA default values, default is degree 0 –constant–; plug in
estimator)
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Try different values for the bandwidth
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Takeaways
First nonparametric regression method: Kernel local regression

In a nutshell: local averages of the dependent variable, y

Choice of bandwidth is key

Use cross-validation to select h

Choice of kernel is less important, optimal kernel: Epanechnikov

STATA commands: npregress, lpoly

Asymptotic properties: consistent, asymptotically normal

Lower convergence rates
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A few problems to be aware about:

When computing confidence intervals: take into account bias
reduction techniques

If asymptotic distribution is employed: undersmoothing, higher
order kernels

Use bootstrap

Open problem: How to compute marginal effects?
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4. Other methods: Local Linear Regression

The Nadaraya–Watson estimator can be seen as a particular
case of a wider class of nonparametric estimators, the so-called
local polynomial estimators.

The Nadaraya–Watson estimator is a local constant estima-
tor because it assumes that m(x) equals a constant in the local
neighborhood of x0.

Now: let m(x) be linear in the neighborhood of x0,

m(x) = a0 + b0(x− x0) in the neighborhood of x0

.
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Implementation of this idea

1) Notice that the kernel regression estimator (previous estimator)
m(x0) can be obtained as

m̂(x0) = argminm0

∑
i

W (
xi − x0

h
)(yi −m0)

2

where the weights are the NW weights:

W (
xi − x0

h
) = K(

xi − x0

h
)/

N∑
j=1

K(
xi − x0

h
)

Why? remember that m(x0) is a constant and ei = yi −m0.
Then, this is similar as weighted least squares, ei = yi −m0.
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2) Consider now m0 = a0 + a1(xi − x0). Obtain the local linear
estimator as:

m̂(x0) = argmina0,a1

∑
i

W (
xi − x0

h
)(yi − a0 − a1(xi − x0))

2

Then, the estimate of m is a neighborhood of x0 is given by

m̂(x) = â0 + â1(x− x0)

Same idea: this is (local) weighted least squares regression,
where the weights are kernel weights

Interpretation:

The constant a0 is the conditional mean at x0.

The slope parameter, a1: is the derivative of the mean function
with respect to x.
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3) More generally, we can consider a local polynomial estimator of
degree p

argmina0,a1

∑
i

W (
xi − x0

h
)(yi − a0 − a1(xi − x0) · · · − ap(xi − x0)

p)2

0-69



Some advantages over NW

Higher accuracy: Local linear regression estimators use a more
flexible model that allows for a more accurate fit to the data, es-
pecially in regions where the data may be changing rapidly. Better
behavior at end points (always problematic because of low density
of data points).

Easy computation of derivatives: (very useful for interpreting
results)

Cons: A bit more costly computationally than NW
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Example

Consider again the education/wage example: we will estimate
a local linear regression

STATA: Can be estimated using lpoly or npregress

lpoly lnhwage educatn,degree(1).

Or npregress kernel lnhwage educatn –several options available!–

Let’s look at the latter

npregress command - default is local linear

The output reports averages of the mean function and the
effects of the mean function.

An average effect may be either 1) an average marginal effect,
for continuous covariates or 2) the mean of contrasts for discrete
covariates.
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npregress kernel lnhwage educatn
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First table: bandwidth employed

Notice that different bandwidths are employed for mean effect
and for the derivative effect

Second table: averages of the means point and for the effects
(derivative)

Notice that by default standard errors do not appear, you can
get them though by explicitly asking for them.
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npgraph:
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Obtain bootstrap standard errors and confidence intervals for
these values

npregress kernel lnhwage educatn, vce(bootstrap, seed(10101) reps(50))
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Plot the graph: Estimated value of m(x0), the conditional mean of
log wage at x0

margins, at(educatn = (1(1)16)) vce(bootstrap, seed(10101) reps(50))
marginsplot, legend(off) scale(1.1) /// addplot(scatter lnhwage
educatn if lnhwage<50000, msize(tiny))
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Partial effects of changing education

margins, at(educatn = (10(1)16)) contrast(atcontrast(ar)) ///

vce(bootstrap, seed(10101) reps(50))

marginsplot, legend(off)
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Stata code

npregress kernel lnhwage educatn

npregress kernel lnhwage educatn, vce(bootstrap, seed(10101) reps(50))

margins, at(educatn = (10(1)16)) vce(bootstrap, seed(10101) reps(50))

marginsplot, legend(off) scale(1.1) /// addplot(scatter lnhwage
educatn if lnhwage¡50000, msize(tiny))

graph export nonparametricfig11.wmf, replace

margins, at(educatn = (10(1)16)) contrast(atcontrast(ar)) ///

vce(bootstrap, seed(10101) reps(50))

marginsplot, legend(off)

graph export nonparametricfig13.wmf, replace
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5. Nearest Neighbor Estimator

Simple idea: The k-nearest neighbor estimator is the weighted
average of the y values for the k observations of xi closest to x0.

Define Nk(x0): the set of k observations of xi closest to x0.
Then:

mKNN (x0) =
1

k

N∑
i

1(xi ∈ Nk(x0))yi

This estimator is

a kernel estimator with uniform weights

except that the bandwidth is variable.

Here the bandwidth h0 at x0 equals the distance between x0
and the furthest of the k nearest neighbors, and more formally
h0 = k/(2Nf (x0)).

Then, the bandwidth changes at each point.
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Pros: a simple rule for variable bandwidth selection.

It is computationally faster to use a symmetrized version that
uses the k/2 nearest neighbors to the left and a similar number to
the right
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6. Lowess

Lowess: locally weighted scatterplot smoothing estimator

A variant of local polynomial estimation (kernel)

Computational Differences:

uses a variable bandwidth h0,k determined by the distance
from x0 to its kth nearest neighbor;

tricubic kernel

Robust against outliers: downweights observations with large
residuals ei = yi −m(xi), which requires passing through the data
N times.
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Lowess has some advantages with respect to local lineal re-
gression:

More robust against outliers

But computationally more expensive

See Fan and Gijbels (1996, p. 24). for additional details Lowess
is attractive compared to kernel regression as it uses a variable
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Example
Comparison of local constant, local linear and lowess: wage and
years of education

To compute lowess: (lowess lnhwage educ, clstyle(p3)), scale(1.1)
///
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5
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0 5 10 15 20

Kernel
Local linear
lowess
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Multivariate Kernel Regression:
Conceptually, multivariate kernel regression is identical to uni-

variate one

m̂(x0) =
N∑
i=1

W (xi,x0,h)yi

where x is a k× 1 vector, W (xi,x0,h) = K((xi − x0)/h)/
∑

i K((xi −
x0)/h) and K(.) is a multivariate kernel

Often, the multivariate kernel is just the product of univariate
kernels

If this is the case, divide by standard deviation so that all vari-
ables have similar scale

Use cross validation to choose a common bandwidth h∗
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Important: convergence rates decreases (curse of dimensional-
ity)

Before:
√
Nh,

Now:
√
Nhk, where k is the number of covariates
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Takeaways

So far: Kernel-based methods to visualize/estimate conditional
expectation in a flexible way

Methods based on local averages of the dependent variable

Several methods: local Kernel, local polynomial, Lowess, near-
est neighbor . . .

Methods differ in bandwidth used, weights used, etc.

Not huge differences, but Lowess and local polynomial behave
better at end points.

These methods can handle multivariate regression, but rates of
convergence decrease, so performance deteriorates as the number
of regressors increases.
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Semiparametric Methods
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1. Introduction

Previous slides: regression models without any structure.

This gives a lot of flexibility but it also has some limitations :

Sometimes, theory may place some structure on the data.
We might want to incorporate this information in the model

We can only include in the analysis a relative small set of
variables (curse of dimensionality)

...but incorporating many variables might be needed to avoid
endogeneity of regressors

This lecture: Semiparametric methods
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Semiparametric models: examples (from Cameron&Trivedi)

Many semiparametric models and many methods to estimate
them. This is only a short intro to these methods.
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Roadmap

1. Partially Linear Models

2. Single Index Models

3. Summary, other models exist . . .
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Partially Linear Model

Partially Linear Model: conditional mean is a linear regression
function plus an unspecified nonlinear component.

E[y|x, z] = xβ + λ(z) λ(.) unspecified.

Model to be estimated:

y = xβ + λ(z) + u, E(u|x, z) = 0. (8)

Estimation Method: Robinson Difference Estimator

We will obtain estimates for β and for λ in two steps

Step 1: get rid of λ(z) and estimate β (only)

Step 2: Use the estimates of β in a model that will allow us to
obtain an estimate for λ(.)
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Robinson Difference Estimator

Step 1: A) get rid of λ(.), B) estimate β

A) get rid of lambda:

Take conditional expectations (by z) on both sides of Model
8 (and notice that E(u|z) = 0):

E[y|z] = E[x|z]′β + λ(z) (9)

Subtract the two equations –eq (8) and eq (9)– and obtain
the model:

y−E[y|z] = (x−E[x|z])′β + u (10)

The conditional moments E[y|z] and E[x|z] are unknown ⇒
Replace them by non parametric estimators m̂yi and m̂xi
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Robinson’s difference estimator:

Step 1: B) estimate β in the model

y− m̂yi = (x− m̂xi)
′β + u (11)

The resulting estimator of β is consistent and A.N (assuming
u is i.i.d.):

√
N(β̂PL − β)

d→ N(0,σ2

(
plim 1

N

N∑
i=1

(xi −E[xi|zi])(xi −E(xi|zi)′
)−1
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Notes:

1. Cost of non-specifying λ? higher variance (efficiency loss) [But
no loss if E(x|z) is linear!]

2. The distribution assumes homokedasticity (u is i.i.d). Use
Eicker-White standard errors to make it robust to heteroskedas-
ticity

3. To estimate the variance: replace (xi −E[xi|zi]) by (xi − m̂xi)

4. How to compute m̂xi and m̂yi?

Robinson: Kernel estimates with convergence no slower than
N−1/4.
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Step 2: Estimate λ

Recall that λ(z) = E(y|z)−E(x|z)′β.

Estimate λ(z) as

λ̂(z) = m̂yi − m̂′
xi
β
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Summarizing: Robinson difference estimator

Model: E[yi|xi, zi] = x′iβ + λ(zi), unspeficied λ(·)

Steps:

1. Kernel regress y on z and get residual y− ŷ.

2. Kernel regress x on z and get residual x− x̂.

3. OLS regress y− ŷ on x− x̂, get β̂

4. Combine the estimates in 1) 2) and 3) to get λ̂(z) = m̂yi − m̂′
xi
β̂
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An example
Same data as before: now, wage on marital status and educa-

tion.

Let’s look first at the OLS:
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Robison’s estimator:

STATA command: semipar

married enters linearly, we allow education to enter nonpara-
metrically

semipar lnhwage married, nonpar(educatn) robust ci title(”Partial
linear”)

with robust standard errors, confidence intervals...

Output has two parts: 1) the parametric component
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. . . and the non-parametric component: Plot of λ(z) against z
where z is education
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Trimming

Trimming: we can apply trimming to estimate the nonpara-
metric component.

In kernel estimation: estimates are not good in areas of the
support of z with low density values

Why? low density=few values to compute the local average

Trimming consists of excluding data points for which the density
f (z) < b, for some positive value b

the command semipar allows for the introduction of trimming
(default is no trimming)
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Summarizing

Partially linear model: additive model with a parametric part
and a non-parametric one

Estimation: Robinson’s two step estimator

Stata: semipar

Advantages of this method:

The model allows ”any” form of the unknown

β̂ is
√
n-consistent
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Summarizing II

These methods have been recently revisited in the machine
learning literature (really cutting edge at the moment)

Double machine learning, see Chernozhukov et al (AER, 2017)

In a nutshell: same idea but estimate the conditional expecta-
tions needed in the procedure above using machine learning, in-
stead of kernel regression

Several advantages, in particular, avoid the curse of dimension-
ality

If interested, check out this link for an easy introduction to the
topic.
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Back to binned scatter plots

Recall that binned scatter plots are very popular and very useful
visualization tools of the conditional expectation

STATA Binscatter command (see handout 3), very popular
but...

problematic as well (for instance, controlling for additional vari-
ables).

A recent paper improves considerably on this: On binscatter,
Cataneo et al. (2024). STATA: binsreg
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Main features of the new binned scatter plots:

Framework: partially linear model.

yi = µ(xi) +w′
iγ + ei

we’re insterested on the shape of the relationship between x
and y, controlling for additional variables w.

it provides ways of controlling (correctly!) for additional vari-
ables

Optimal choice of the number of bins (i.e., number of quan-
tiles of x plotted)

Uncertainty quantification: confidence bands on the binscat-
ter!

Bottom line: in your applications, use the new binsreg com-
mand!
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Single Index Models

Model:
E[yi|xi] = g(x′iβ)

where g(·) is not specified.

Many standard nonlinear (parametric) models such as logit,
probit, and Tobit are of single-index form. (In these cases g(.) is
known)

But we can also estimate this model leaving g(.) unspecified
and estimate it non-parametrically.

0-105



Advantages:

Advantage 1: generalizes the linear regression model (which
assumes g(.) is the identity function)

Advantage 2: the curse of dimensionality is avoided as there is
only one nonparametric dimension
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Interpretation: marginal effects

For single-index models the effect on the conditional mean of
a change in the jth regressor using calculus methods is

∂E[y|x]
∂xj

= g′(x′β)βj , (12)

where g′(z) =
∂g(z)
∂z

.

Then, relative effects of changes in regressors are given by the
ratio of the coefficients since

∂E[y|x]/∂xj
∂E[y|x]/∂xk

=
βj

βk
, (13)

because the common factor g′(x′β) cancels.

Thus, if βj is two times βk, then a one-unit change in xj has
twice the effect as a one-unit change in xk.
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Estimation with unspecified g(.)

Identification: β can only be identified up to location and scale

That is, we estimate a+ bβi

This is still useful to compute relative marginal effects!

Ichimura semiparametric least squares: choose β and g(·) that
minimizes

argminβ

N∑
i=1

w(xi)f (yi − ĝ(x′iβ))
2,

where ĝ(.) is the leave-one-out NW estimator and w(·) is a trimming
function that drops outlying x values.

β can only be estimated up to scale in this model,

but still useful as ratio of coefficients equals ratio of marginal
effects in a single-index models.

0-108



Example

Same data as before. Now: wages on hours worked and edu-
cation

STATA command: sls (Semiparametric Least Squares from
Ichimura, 1993)

Install it first:

ssc install sls

Run both ols and sls and compare results
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Interpretation:

one more year of education has the same effect on log hourly
wage as working 1048 more hours a year!

Compared to OLS, 0.1071453/0.0001365 = 785.
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This graph plots the predicted conditional expectation versus
x′β (highly nonlinear)
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Index models, summary

Generalizes the linear regression model (which assumes g(.)
constant)

Gain over parametric models: more flexible

Gain over fully non-parametric: only one nonparametric dimen-
sion (avoid curse of dimensionality).

We only identified the parameters up to location and scale but

The ratio of the coefficients provides the relative marginal ef-
fects
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Takeaways
Semiparametric methods aim to overcome some of the limita-

tions of fully parametric and fully nonparametric methods

Flexible, yet tractable (many variables can be included)

Literature is very large

Here, we’ve only presented a short introduction.

Partial linear model, single index models . . . but many more
models are available

See this document to learn about other semiparametric meth-
ods STATA can handle
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