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Quantile Regression: Summary (so far)
In any empirical analysis relating Y and X, we can be interested

in several aspects of the condional distribution Y |X = x

Values that estimate the central tendency of this distribution:
conditional mean, conditional median,

Values that look at the dispersion of the distribution: condi-
tional quantiles (that look at aspects other than the median),

QR is typically employed with continuous dependent variables
(so the quantiles are uniquely defined), but there are exceptions
(e.g., count data)

0-1



QR estimators can be obtained by optimizing an objective func-
tion (average of the check function. ρ(.)), in a similar way as we
do when we do develop OLS estimators.

β̂τ = argmin
b

∑
i=1

ρτ (|Yi −X ′
ib|)

There’s no close-form solution (unlike in OLS), optimization is
done numerically

Special case: LAD (least absolute deviations).

Estimates the conditional median

Advantanges and disadvantages w.r.t. OLS.

A good option if the data contains outliers

Estimation is easy, interpretation has to be done with care
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This handout: Roadmap

1. Interpretation of coefficients (cont.)

2. Asymptotic properties

3. Estimation of Standard Errors. Confidence Intervals

4. QR with Panel Data

5. QR with censored data

6. Non parametric quantile regression

7. Quantile causal effects
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More on interpretation: Retransformation

In the example of the previous handout: dependent variable is
log expenditures.

We’re interpreting the impact of variable X on logY in quantile
τ , are we interested on this?

We’re typically interested in the effect of X on Y (not on logY).

Question: if we’ve estimated a QR where the dependent vari-
able is g(Y) (g is monotonic and increasing function) then how do
we interpret marginal effects with respect to Y?
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Before we answer this question, let’s consider first transforma-
tions of a variable, its quantiles and expectations.

Consider a variable Z, g(Z), where g is a monotonic transfor-
mation. For instance g(Z) = Z2,Z > 0

If you know that E(g(Z))=6, what’s the value of E(Z)?
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Before we answer this question, let’s consider first transforma-
tions of a variable, its quantiles and expectations.

Consider a variable Z, g(Z), where g is a monotonic transfor-
mation. For instance g(Z) = Z2,Z > 0

If you know that E(g(Z))=6, what’s the value of E(Z)?

If you know that the 40th percentile of g(Z) is 4, what’s the
value of the 40th percentile of Z?

As you can see, expectations and quantiles behave differently
when transformations are made. We need to take this into account
when interpreting marginal effects.
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Equivalence property of QR: Given qτ (g(Y )|Z) = X ′β, (g is
monotonic and invertible) then qτ (Y |Z) = g−1(X ′β)

For example: qτ (lnY |Z) = X ′β ⇒ qτ (Y |X) = e(X
′β)

Let’s go back to the computation of marginal effects.

Let’s derive qτ (Y |X) with respect to Xj:

∂qτ (Y |X)

∂Xj
=

∂e(X
′β)

∂Xj
= e(X

′βτ )βτj

The derivative depends on X.

Average marginal effect (AME):

N−1
N∑
i=1

e(X
′
iβτ )βτj
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Using STATA:

qreg ltotexp totchr age female white

quietly predict xb

gen expxb=exp(xb)

quietly sum expxb

display ”Multiplier of QR in logs coeffs to get AME in levels =” r(mean)
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To compute marginal effects of Xj on Y , just multiply 3761 by
the relevant coefficient βjτ

Final Note: the equivalence property of QR is exact only if the
conditional quantile function is correctly specified.

In applications this is not generally the case, so it has to be
interpreted as an approximation
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Graphical display of coefficients over quantiles

When we estimate QR for different values of τ there are a lot
of coefficients to analyze

Graphical representations of the results are very useful

One possibility is to construct one graph for each variable in
the regression that displays how βτ changes for τ ∈ (0, 1)

Horizontal line: OLS point estimates and CI (constant across
quantiles)
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In STATA command: grqreg

You need to install the command first

the code used to generate the previous graph:

The graph includes the ols coefficients

ci and ciols include the confidence interval for the ols and QR
coefficients

ssc install grqreg

bsqreg ltotexp suppins totchr age , reps(100)

grqreg, cons ci ols olsci title(constant suppins totchr age)
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2. Asymptotic Properties of the QR estimator
Model: The linear quantile regression model is

Y = X ′βτ + e

qτ (e|X) = 0

These two equations imply that the conditional quantile τ of Y
given X is X ′βτ

Notice that the error e is not centered at zero, instead it’s
centered so that its τth quantile is zero.

This is a normalization, but it changes the role of intercept
changes when we move from mean regression to QR.
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Recall that (the population) βτ can be obtained as

βτ = argminbE[ρτ (Y −X ′b)].

The QR estimator of βτ , β̂τ is given by the sample analog of
βτ :

β̂τ = argminb
1

N

N∑
i=1

ρτ (Yi −X ′
ib)
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Consistency

Under broad (and a bit technical) assumptions, the QR esti-
mator is consistent:

β̂τ
p→ βτ

(From Hansen’s book):
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Technical note:

Condition 24.18 is needed for the uniqueness of the coefficients
βτ

A sufficient condition (also called quantile independence): as-
sume that the cond. distribution of the error e doesn’t depend on
X at e = 0, thus 24.18 simplifies to

Qτ = E(XX ′)fτ (0)

Advice: there’s no need to assume this (this is a strong as-
sumption)

The reason we highlight this is because STATA’s default uses
this suficient condition to compute the var-cov matrix of β̂τ(we’ll
see that in a few slides).
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Asymptotic Normality

β̂τ is
√
N-consistent and asymptotically normal
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And if the model is not exactly linear?

Assume that the conditional quantile τ is not linear but a linear
model is estimated.

What is the linear model estimating in this case?

Remember: when the same happens in an OLS framework,
the linear model is the best linear approximation to the conditional
expectation.

Luckily, the same happens in the case of quantile regression, a
linear model can be also interpreted as the best linear approxima-
tion the conditional quantile.

See Mostly Harmless p.277 for additional details.
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Therefore:

The results above don’t assume correct specification

This means that we can interpret the linear function as an
approximation to the ”true function”, we don’t need the ”truth”
to be exactly linear

Then: the variance-covariance matrix in theorem 24.4. is the
most general and applies broadly for practical applications where
linear models are approximations (rather than literal truths)

This variance-covariance matrix simplifies if we impose different
assumptions, for instance

correct specification

quantile independence
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These are the expressions of the var-cov matrix under different
assumptions (from Hansen’s book):

Advice: Always take as few assumptions as possible. Therefore,
go for the first expression, as it’s valid under broad conditions unlike
the other two!
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3. Estimation of the Variance-Covariance ma-
trix: some tips

By default, STATA qreg doesn’t estimate Vτ (the general variance-
covariance matrix that allows for mispecification and is derived
under general conditions)

Instead, it provides standard errors based on V 0
τ , the var-cov

matrix under correct specification and quantile independence (see
Hansen).

You should avoid the use of these standard errors (for iden-
tical reasons you should avoid homocedastic variance-covariance
matrices in OLS).

If you use vce(robust): variance-covariance matrix that still
assumes correct specification but drops the quantile independence
assumption (V c

τ ).

For a more general variance-covariance matrix estimate: use
Bootstrap
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Estimation of the Variance-Covariance matrix: some
tips, II

Some tips to compute Bootstrap std. errors for QR regression

STATA command:

bootstrap, reps(#): qreg y x

Number of replications should be large: at least 1000 (10,000
preferred!)

Time consuming, only needs to be done for your final calcu-
lations (i.e., do intermediate regressions with less replications to
save time).
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Bootstrap confidence intervals

Two ways of computing Bootstrap CI

a) Use bootstrap std.error and Normal quantile

b) Use percentiles of bootstrap distribution

For obvious reasons the second way is better! but this is not
the STATA default

To obtain b) type:

bootstrap, reps(#): qreg y x

estat bootstrap
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Clustered Standard Errors

Not implemented by qreg

Can be obtained in the bootstrap case:

bootstrap, reps(#) cluster(id): qreg y x

estat bootstrap.
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STATA tip:

Some of the QR built-in commands can be very slow, particu-
larly when bootstrap std. errors are computed.

Alternative user-written package: IVQTE (Blaise Melly),

see here
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Takeaways
QR estimator is consistent and asymptotically normal under

broad assumptions (it doesn’t require correct specification)

Use std. errors valid under broad assumptions

In practice: use bootstrap standard errors

To compute CI: use percentiles from the bootstrap distribution
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4. Panel data
Assume now we have panel data: {Yit,Xit}, i = 1, ...,N , t =

1, . . . ,T .

A natural model to consider: a linear model with an individual
effect αiτ

Qτ [Yit | Xit,αiτ ] = X ′
iβτ + αiτ .

Can we apply any of the techniques we typically employ in
standard panel regressions to get rid of αi?

Recall that these methods are:

1. Remove the individual effect by the within transformation
(i.e., for each individual, subtract its mean, see section 17.8
in Hansen’s book for details);

2. Remove the individual effect by first differencing;

3. Estimate a full quantile regression model using the dummy
variable representation.
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Panel data, II

Unfortunately, all of these methods fail!

Why?

Methods (1) and (2) fail for the same reason: The quantile
operator Qτ is not a linear operator:

The within transformation of Qτ [Yit|Xit,αiτ ] does not equal
Qτ [Ỹit|Xit,αiτ ]

similarly ∆Qτ [Yit|Xit,αiτ ] ̸= Qτ [∆Yit|Xit,αiτ ].
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Method (3) fails because of the incidental parameters problem:

the number of parameters in the model (because of the indi-
vidual dummies) is proportional to sample size

in this context, nonlinear estimators (including quantile re-
gression) are inconsistent.
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Panel data, III

QR estimators for Panel data: several proposals to deal with
this issue, but none are particularly satisfactory.

Canay (2011)’s method: has the advantage of simplicity and
wide applicability.

Based on a simplification: the individual effect is common
across quantiles: αiτ = αi.

Thus αi shifts the quantile regressions up and down uniformly.

Under this assumption: we can write the quantile regression
model as

Yit = X ′
iβτ + αi + eit
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Panel data, IV

Canay’s estimator takes the following steps:

1. Estimate αi by (standard) fixed effects α̂i

2. Estimate β(τ ) by quantile regression of Yit − α̂i on Xit.

How to do step 1:

The key: the assumption that the fixed effect αi does not
vary across the quantiles τ , means that the fixed effects can be
estimated by conventional fixed effects.

Then, use a fixed effect estimator for the conditional mean.
The model for the conditional mean would be

Yit = X ′
iθ + αi + eit

more specifically: Estimate θ by the within estimator and αi by
taking averages of Yit −Xitθ̂.
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How to do step 2:

After step 1, estimate β(τ ) by quantile regression of Yit − α̂i on
Xit.

Primary disadvantage of this approach: the assumption that αi

does not vary across quantiles is restrictive.

This is a topic of active research

More contributions: visit Blaise Melly website for recent con-
tributions (with STATA packages)

Melly and Pons (2023).
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5. Censored data and QR

Censored data: a situation in which not all the values of the
distribution are provided, typically very small/large values are given
in an interval

Example: wages. Frequently, high wages are grouped in one
category, i.e., wages> 100, 000 a year (top-coded)

Estimators of the mean (conditional mean) are not consistent:
we need all the distribution in order to compute expectations cor-
rectly

However, this problem doesn’t affect quantiles! In this exam-
ple: all quantiles below the censoring point are unaffected by the
censoring.
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More formally:

if the variable y is top-coded above a value c, we observe Y ∗ =
min(y, c) instead of y.

Then, using an idea by Powell (1986), we can exploit the fact
that qτ (Y ∗|Xi) = min(X ′

iβτ , c).

The parameter vector βc
τ solves

β̂τ ,c = a
b
rgminE(1[X ′b < c](ρτ (Y −X ′b))). (1)

Hence, we estimate βτ as:

β̂τ ,c = argmin
b

N∑
i=1

(
1[X ′

ib < c] ρτ (Yi −X ′
ib)

)
. (2)
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6. Non parametric quantile regression
So far, we’ve assumed that quantile regression functions are

linear

We know that this is a simplification, in many instances, an
over simplification.

Good news: Quantile regression functions may be estimated
using standard nonparametric methods.

This is a potentially large subject.

The simplest way to go: consider series methods, which have
the advantage that they are easily implemented with conventional
software.
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Non parametric quantile regression, II

The nonparametric quantile regression model is

Y = gτ (X) + e

Qτ [e|X ] = 0

Idea of series regression: approximate the function gτ (.) by a
series regression as the ones we saw in Handout 4.

For example,

Y = β0 + β1X + · · ·+ βkX
k + ek

with Qτ [ek|X ] ≈ 0
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For any k, the coefficients can be estimated by quantile regres-
sion.

As in series regression the model order k should be selected
to trade off flexibility (bias reduction) and parsimony (variance
reduction).

Caveat: how to select k in a given application?

Unfortunately, standard information criterion (such as the AIC)
do not apply for quantile regression

It is unclear if crossvalidation is an appropriate model selection
technique.

These questions are an important topic for future study.
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An example (Hansen, p.796)

Y: log wage quantile regressions on a 5th order polynomial in ex-
perience.
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There are two notable features.

First, the τ = .1 quantile function peaks at a low level of expe-
rience (about 10 years) and then declines substantially with expe-
rience.

Second, even though this is in a logarithmic scale the gaps
betwen the quantile functions substantially widen with experience.
This means that heterogeneity in wages increases more than pro-
portionately as experience increases.
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7. Causality: Quantile Causal Effects

Key question: Can we interpret the results obtained in QR as
causal?

We can partially answer this question in the treatment response
framework

We will provide conditions under which the quantile regression
derivatives equal quantile treatment effects.
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Treatment-Response model

Y is outcome, X are controls and D is the treatment variable,
U is an unobserved structural random error.

For concreteness: Y: wage, D: college education; U: (unob-
served) ability

Y = h(D,X,U)

For simplicity, D is binary: D = 0 or 1.

Causal effect of the treatment

C(X,U) = h(1,X,U)− h(0,X,U).
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In general, this effect is heterogeneous across individuals: we
can study different aspects of its distribution, in particular, mean
and quantiles

Average Treatment Effect: average of heterogeneous treat-
ment effect, E[C(X,U)|X = x]

Quantile treatment effect is its τth conditional quantile

q∗τ (x) = qτ [C(X,U)|X = x].

Interpretation of q∗τ (x): traces out the distribution of the causal
effect across the different quantiles

Notice that it looks at the quantiles of the distribution of the
causal effect (=the difference between the cases D=1/D=0)
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From observational data, we can estimate the quantile regres-
sion function (as we’ve done up to now)

qτ (d,x) = qτ [Y |D = d,X = x] = qτ [h(D,X,U)|D = d,X = x]

The estimated effect of D would be

Dτ (X) = qτ (1,x)− qτ (0,x)

Key Question: Under what conditions Dτ (X) = q∗τ (x)

Notice the difference:

Dτ (X): difference of conditional quantiles (τ) of people with
college and people without college

q∗τ (x): quantile τ of the effect of going to college.
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The required conditions are (see Hansen p. 793):

Theorem:

Under Assumption 24.1, Dτ (X) = q∗τ (x)
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To understand the theorem we need to understand the meaning
of these conditions, let’s consider an example:

Example: impact of college attendance on wages;

Y: wages,

D: college attendance;

U: innate ability (unobserved, not in the model).

X: a bunch of control variables
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Meaning of assumptions in 24.1

Assumption 24.1.1: excludes multi-dimensional unobserved het-
erogeneity.

Assumption 24.1.2 & Assumption 24.1.2: monotonicity as-
sumptions

Assumption 24.1.2 requires that the wage gain from attend-
ing college is increasing in latent ability U (given X).

Assumption 24.1.2 requires that wages are increasing in la-
tent ability U whether or not an individual attends college.
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To see the role of these two assumptions, consider two individ-
uals A and B, A has higher ability than B. These two assumptions
together require

A’s gain from attending college exceeds B’s gain.

A receives a higher wage than B if they both are high school
graduates AND if they are both college graduates
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More on assumptions

Assumption 24.1.4 is the traditional conditional independence
assumption.

This is a critical condition for causal inference:

By conditioning on a sufficiently rich set of variables X any
correlation between D and U has been eliminated.

Under this condition, the probability of receiving the treatment
(conditioning on observables) doesn’t depend on unobserved vari-
ables.

P (D = 1|X,U) = P (D = 1|X)

(But notice how stringent this assumption is, under this as-
sumption, the probability of attending college doesn’t depend on
ability!)
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It’s clear that these conditions won’t hold in many applications.

Solution: instrumental variables
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Takeaways

Under the conditional independence and the monotonicity as-
sumptions, the quantile regression coefficients are the marginal
causal effect of the treatment variable D upon the distribution of
Y

The coefficients are not the marginal causal effects for specific
individuals, rather they are the causal effect for the distribution.

As in the conditional mean case, these conditions can be very
demanding

For instance, in the example above, is it reasonable to expect
that attending college is unrelated to (unobserved) innate ability?

What if they don’t hold?
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The IV QR

As in the OLS case, endogeneity can be solved by using a good
instrument(s)

Same idea: the instrument should verify an uncorrelatedness/independence
assumption

IV methods for quantile regressions, however, are not so simple,
and are still under development these days.

We’ll focus on a particular case: estimation of treatment effects
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IV estimation of Quantile Treatment Effects
(QTE)

A particular case:

D (treatment) is binary and Z (instrument) is binary

Under these assumptions, Abadie, Angrist and Imbens (2002)
introduced an IV estimator that is simple to implement:

Quantile treatment effect estimator

Their paper: ”Instrumental Variables Estimates of the Effect of
Subsidized Training on the Quantiles of Trainee Earnings”, Econo-
metrica 2002.
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Quantile Treatment Effects Estimator: Framework

Similar assumptions as LATE framework for average causal
effects.

LATE: local average treatment effect

Setup:

Binary treatment D

Potential endogeneity due to omitted variables

A binary instrument Z is available

We can think of Z as initiating a causal chain: Z⇒ D ⇒ Y
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An example

Question: do the poorest workers benefit from a training pro-
gram?

Binary treatment: doing the training program or not.

How is the treatment assigned: lottery

However, participation is voluntary, so workers self-select them-
selves to treatment.

(Binary) instrument: being assigned to treatment by the lottery
(intention to treat).
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To capture the idea that Z has a causal effect on D consider
this notation:

D1i: i’s treatment status if Zi = 1

and
D0i: i’s treatment status if Zi = 0

The LATE framework partitions any population with an instru-
ment into three sets of instrument-dependent subpopulations.

Compliers: D1i = 1 and D0i = 0

Always takers: D1i = 1 and D0i = 1

Never takers: D1i = 0 and D0i = 0
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To capture the idea that Z has a causal effect on D consider
this notation:

D1i: i’s treatment status if Zi = 1

and
D0i: i’s treatment status if Zi = 0

The LATE framework partitions any population with an instru-
ment into three sets of instrument-dependent subpopulations.

Compliers: D1i = 1 and D0i = 0

Always takers: D1i = 1 and D0i = 1

Never takers: D1i = 0 and D0i = 0

(How about the “defiers”? Monotonity assumption: P (D1 ≥
D0|X) = 1.)
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The “local” nature of LATE:

We can only identify the effect of the treatment on the popu-
lation of compliers. Why?

The instrument is not informative in the population of always
takers or never takers

For these groups, the instrument is not a “source of exogeneous
variation”, as by definition treatment status for these two groups
is unchanged by the instrument.

The effect in the whole population might be different than the
“local” effect
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Example:

Goal: estimating the effect of attending college on wages at
different points in the distribution.

Problem: the decision of attending college is not random, po-
tentially depends on unobserved variables (e.g., ability)

We need an instrument that generates a group of compliers:
give a (random) subsidy

Compliers: those that attend college with the subsidy but
wouldn’t do it without it.

Always takers: always go to college, regardless of the sub-
sidy

Never takers: never go to college, regardless of the subsidy
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For obvious reasons, the use of the instrument will only provide
us with information in the complier subpopulation.

Notice that the effect in this subpopulation doesn’t need to be
the same as that in the whole sample!
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Framework, cont.

Potential outcomes framework. Potential outcome of individ-
ual i, depending on value of the treatment, D:

Y1i if Di = 1

Y0i if Di = 0

The parameters of interest are defined as follows:

qτ (Yi|Xi,Di,D1i > D0i) = ατDi +X ′
iβτ , (17)

where:

qτ (Yi|Xi,Di,D1i > D0i): τ quantile of Yi given Xi and Di and
conditional on being a complier, D1i > D0i

ατ ,βτ : quantile regression coefficients for compliers
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Interpretation of ατ :

Recall that in the population of compliers (D1i > D0i) and
conditional on X, D is independent of potential outcomes.

Why? the instrument Z is a source of exogenous variation in
treatment status in this group.

Therefore, ατ : Difference in the conditional-on-X quantiles of
the treated (Y1i) and non-treated (Y0i) for compliers (D1i > D0i).

ατ = qτ (Y1i|Xi,D1i > D0i)− qτ (Y0i|Xi,D1i > D0i)
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What ατ is NOT measuring

1. This is not a comparison between individuals who effectively
received the treatment (for instance, attended college), and in-
dividuals who did not (i.e., unconditional distribution of Y). The
results are conditional on X!

2. We’re not estimating the conditional quantile of the individual
treatment effects: qτ (Y1i − Y0i). Unlike in the conditional mean
case the difference of quantiles is not the quantile of the difference!

Let’s consider this last point a bit more:

When estimating conditional expectations: the mean of the
differences is the differences of the means

In quantiles: this is not true, the quantile of the difference is
not the difference of the quantiles!
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Therefore: we’ll be comparing the (conditional) distribution of
treated and the distribution of not treated, we’re not comparing
individuals.

As we saw in the previous section, we would need to impose
strong conditions so that these functions are the same (mono-
tonicity conditions, which are related to the rank invariance of a
treatment).

But typically knowing the difference of the quantiles is enough.

Why? consider a training program. For evaluation purposes
it would be enough if we observe that the people that took the
program are better off.
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The QTE Estimator

Key idea: Z is a source of exogenous variation (i.e., condi-
tional on X it’s unrelated to U). Quantile regression coefficients
can (theoretically) be estimated by running QR in the population
of compliers.

Problem: We do not observe whether an individual is a complier
or not.

Solution: Let’s look for the compliers. To do that, we’ll use
Abadie (2003) “Kappa” theorem to find them.
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Main idea:

I’d like to estimate the effect of treatment by comparing treated
and non treater individuals in the complier population

For this I need to “find” the non-compliers and remove them
from the comparison group.

The latter individuals are of two types:

Always takers

Never takers.
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Let’s define an operator κi that ”finds compliers”.

κi ≡ 1−
Di(1−Zi)

1−Pr(Zi = 1 | Xi)
−

(1−Di)Zi

Pr(Zi = 1 | Xi)

Intuition:

individuals with Di(1− Zi) = 1 are always-takers as, for this
term to be 1 then Di = 1 and Zi = 0.

individuals with (1−Di)Zi = 1 are never-takers, as 1−Di = 1
(i.e., Di = 0) and Zi = 1;

hence, the left-out are the compliers!

Indeed, it can be checked that

E[κi | Yi,Xi,Di] = Pr(D1i > D0i | Yi,Xi,Di).
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Abadie’s (2000) result:

Let g(Yi,Xi,Di) be any measurable function of (Yi,Xi,Di) with
finite expectation, and Zi be a binary instrument that satisfies the
standard assumptions given Xi, then:

E[g(Yi,Xi,Di) | D1i > D0i] =
E[κig(Yi,Xi,Di)]

E[κi]

where:

κi ≡ 1−
Di(1−Zi)

1−Pr(Zi = 1 | Xi)
−

(1−Di)Zi

Pr(Zi = 1 | Xi)
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Given this result, Abadie, Angrist, and Imbens (2002) devel-
oped the QTE estimator as the sample analogue of:

(ατ ,βτ ′) = argmin
a,b

E[ρτ (Yi − aDi −X ′
ib) | D1i > D0i]) (3)

= argmin
a,b

E[κiρτ (Yi − aDi −X ′
ib)] (4)

To obtain the estimator, substitute expectation by sample mean.
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Practical considerations

κi needs to be estimated. The uncertainty in the estimation of
this parameter has an impact on the distribution of the estimators
of the main parameter (ατ).

Typically, bootstrap is employed ( including the estimation of
κi in the bootstrapping). Abadie et al. (2002) also provide the
asymptotic distribution, but it’s less employed.

To avoid non-convexities in the optimization process, in prac-
tice, expresion (4) above is replaced by this one:

(ατ ,βτ ′) = argmin
a,b

E[E(κi|Yi,Di,Xi)ρτ (Yi − aDi −X ′
ib) (5)

(which is obtained by iterating expectations in (4))
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A further simplification gives:

E[κi | Yi,Xi,Di] =

1−
Di(1−E[Zi | Yi,Xi,Di = 1])

1−Pr(Zi = 1 | Xi)
−

(1−Di)E[Zi | Yi,Xi,Di = 0]

1−Pr(Zi = 1 | Xi)
(6)

this is the expression used in the QTE estimator
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A very simple to implement the QTE estimator consists of the
following two steps:

1. Estimate E[κi | Yi,Xi,Di]

2. Perform quantile regression on ρτ (Yi − aDi −X ′
ib) (e.g., with

qreg) using these predicted κ’s as weights.

How to estimate E[κi | Yi,Xi,Di]:

See details in Mostly Harmless, p. 287

It’s done by running some probit regressions of a) Zi on Yi and
Xi for D=1 and D=0, (separately)

b) A probit of Zi on Xi (whole sample)

Construct E(κi|Yi,Di,Xi) by replacing (a) and (b) in (6) above.

Fortunately, we can also do all this using a very recent STATA
user-written command
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An example
From Abadie et al, 2003.

Job Training partnership Act (JTPA): large federal program
providing subsidized training to disadvantaged american workers
(randomly assigned)

Effect of the program?

Sample: 5102 adult mean with 30 month earnings data in the
sample.

Key variables:

Yi :earnings

Di: training received

Zi: randomly assigned offer of training program
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Problem: some participants declined the intervention being of-
fered (only 60% of the potential participants accepted the training)

Thus: treatment received (D) is not random! it’s therefore
partly self-selected and likely to be correlated with potential indi-
vidual characteristics, and then, potential outcomes.

Instrument: offer received to participating in the program

Covariates: Since Z is truly random, covariates are not really
needed to estimate the effects on compliers. However, even in
these type of situations it’s customary to control for other variables
to correct for chance associations and to increase precision.

Following TAble: OLS and QR, (first panel), 2SLS and QTE
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Evidence of positive selection (compare the OLS and 2SLS,
for instance)

Very large effects for lower quantiles in QR but very low after
instrumenting!

Effect is concentrated in the upper quantiles!
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An example using STATA
Using geographic variation in college proximity to esti-
mate the return to schooling (Card, 1993)

Goal: impact of college attendance on wages

Key variable: college attendance (dummy)

Problem: it’s endogeneous, (college attendance is correlated
with unobserved variables, for instance, ability, socio-economic sta-
tus, etc).

Instrument: college proximity

Card showed that people (his sample only had men, in fact)
who were raised in local labor markets had significantly higher lev-
els of education, even controlling for background factors (parental
education, etc).
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We will use the IVQTE package to compute the QTE estima-
tor (but remember, you can also compute it following the steps
mentioned above using just probit and qreg!)

Then, dep variable is log wages, indep. variable is college atten-
dance, controls: mother’s education, experience, region and black
(dummy)
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Quantile regression (no instrumenting yet)

We can get the same estimates using qreg and ivqte! (no
instrumenting yet). Let’s see that: qreg lwage college exper black
motheduc reg662 reg663 reg664 reg665 reg666
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ivqte lwage exper black motheduc reg662 reg663 reg664 reg665
reg666 reg667 reg668 reg669 (college), quantiles(0.1) variance
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Point estimates are exactly identical (because ivqte calls qreg)
BUT the standard errors differ

Standard errors of ivqte are preferred, they are robust against
heteroskedasticity and other forms of dependence between the
residuals and the regressors.

Abadie, Angrist and Imbens estimator

0-79



0-80



Takeaways
Using QR we can investigate the effects of covariates not only

in the central values of the distribution, but also in the tails on in
any other point we might be interested in

All the aspects we studied in conditional mean estimation can
be re-studied here: very large literature!

Still some unresolved issues, literature is still active in this area!
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