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1. Introduction
The aim of statistical inference is

to use data to infer an unknown quantity.

trade-off between efficiency and generality

this trade-off is controlled by the strength of assumptions that
are made on the data generating process.

Parametric inference favors efficiency.

Given a model (strong assumption!), parametric inference de-
livers a set of methods (point estimation, confidence intervals, hy-
pothesis testing, etc.) tailored for such model.

Efficient if assumptions are true. Otherwise inconsistent.
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Nonparametric inference favors generality.

Nonparametric methods: flexible estimation approaches

Given a set of minimal assumptions, it provides inferential
methods that are consistent for broad situations, in exchange for
losing efficiency for small or moderate sample sizes.

Non-parametric econometrics is a huge field

These lectures will provide an introduction of non-parametric
methods in econometrics.

Essential ideas are intuitive, but the concepts and technicalities
involved get complicated fairly quickly.
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Additional References

See the syllabus for main references

Additional references (standard textbooks in graduate –PhD
level– courses):

“Non-parametric Econometrics” by Pagan and Ullah

”Non-parametric Econometrics: Theory and Practice”, by Li
and Racine

“Nonparametric Econometrics: a Primer”, by J.S. Racine
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Some key differences between parametric and nonpara-
metric methods

Parametric methods

need of “parametric” assumptions: examples, distribution of
the data (for instance, normality) or about the shape of the relation
among the variables under analysis (for instance, linearity).

Can handle many variables.

The focus is on estimating parameters.

“Standard” asymptotic theory: (typically)
√
N-convergence.
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Non-parametric methods

They require making none of these assumptions.

The focus in on estimating functions. Estimates are typically
presented as graphs. (Then, it becomes essential to produce nicely
formatted graphs, etc.)

In practice, it cannot handle many variables (”curse of dimen-
sionality”).

Typically different asymptotic theory, convergence is slower
than

√
N
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Semiparametric methods

Semiparametric methods: compromise between parametric and
non-parametric

They aim at taking advantage of the advantages of the two
worlds

They place some structure in the data (i.e., a parametric part)
but they are not fully-parametric; combine parametric and non-
parametric methods

An example:

• E.g.: E(y|x, z) = x′β + g(z) where g(.) is unspecified

• reduces the dimension of the non-parametric component to
one dimension
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Takeaway
Parametric and nonparametric methods have pros and cons.

Therefore, they should be thought as complements, not sub-
stitutes.

An example: you might estimate something parametrically,
but then assess the validity of your assumptions by estimating it
again nonparametrically, checking that results are consistent.

Tradeoffs of Parametric methods

Pros:

theory is simpler

more efficient

they allow us to study the relationship between many vari-
ables.

Cons: accuracy depends on validity of assumptions
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Takeaway, II

Tradeoffs of Nonparametric methods:

Pros:

valid under very mild assumptions

Cons:

less efficient

theory is more complicated

curse of dimensionality: estimation becomes impossible as
the number of regressors increase

Not fully “nonparametric”: there are also parameters to
be chosen, and the results will depend on the values chosen (i.e.,
as in parametric models!).
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This course: Density estimation and nonparametric re-
gression

We’ll focus on two problems:

• Density estimation: kernel density estimation.

• Regression curve estimation: regression on a single scalar
without imposing a functional form
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Density Estimation: Roadmap

1. Introduction

2. Density Estimation.

3. Histograms

4. Nonparametric (kernel) density estimation
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2. Density estimation

Problem: Given some observations from some variable X, we
would like to obtain an estimate of its density.

Why?

Nonparametric density estimates may be used for:

• Exploratory data analysis.

• Estimating qualitative features of a distribution (e.g. uni-
modality, skewness, etc.).

• Specification and testing of parametric models (e.g., do my
data look normal?).

0-13



• Constructing a nonparametric estimate of the conditional
mean function (CMF) of Y given X:

µ(x) = E(Y |X = x) =

∫
yfXY (x, y)dy/fX(x),

where fX(x) =
∫
y f (x, y)dy.

Given an estimate f̂ (x, y) of the joint density f (x, y) of (X,Y ),
the analogy principle suggests estimating µ(x) by

µ̂(x) =

∫
y
f̂ (x, y)

f̂X (x)
dy (1)

where f̂X (x) =
∫
f̂ (x, y)dy.

• Many statistical problems involve estimation of a population
parameter that can be represented as a statistical functional
T (f ) of the population density f . In all these cases, if f̂ is
a reasonable estimate of f , then a reasonable estimate of
θ = T (f ) is θ̂ = T (f̂ ).
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Why the density and not the distribution function?

The distribution function (df) and the density function are
equivalent ways of representing the distribution of X, but there
may be advantages in analyzing a density:

The graph of a density may be easier to interpret if one is
interested in aspects such as symmetry or multimodality.

Estimates of certain population parameters, such as the mode,
are more easily obtained from an estimate of the density.
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Alternative ways of estimating a density:
Parametric vs. Nonparametric estimation

Parametric density estimation:

First step: choose a parametric density function (i.e., the nor-
mal, the exponential, the uniform, etc), and use data to estimate
the parameters of this density.

For example, if normality is assumed, then X ∼ N(µ,σ2).

Use data to estimate µ and σ2 using the approaches you already
know, X ∼ N(µ̂, σ̂2).

Problem: what if X doesn’t follow a normal distribution?
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Nonparametric density estimate:

1. Simplest approach: use a histogram by breaking data into bins
and using the relative frequency within each bin.

• Problem: a histogram is a step function, even if the variable
is continuous.

2. Smooth nonparametric density estimate (kernel density esti-
mate):

• Use a histogram that is smoothed in several ways
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3. Histograms

A histogram is a nonparametric estimate of the density of X.

Histogram is a step function defined over equally-spaced bins,
where each step contains the fraction of observations falling in
each bin.

Formal derivation of the histogram:

The density is the derivative of the cdf F (x0) (i.e. f (x0) =
dF (x0)

dx
). Then

f (x0) = lim
h→0

F (x0 + h)− F (x0 − h)

2h

= lim
h→0

1

2h
Pr[x0 − h < x < x0 + h]
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For a sample xi, i = 1, . . . ,N of size N, this suggests using the
estimator

fHIST(x0) =
1

2h

N∑
i=1

1(x0 − h < xi < x0 + h)

N

(i.e., replace probability by relative frequency), where 1(.) is the
indicator function defined as

1(A) =

{
1 if A is true 0

otherwise

The estimator fHIST(x0) is a histogram estimate centered at x0
with bin width 2h

If fHIST is evaluated over the support of x at equally spaced
values of x, each 2h units apart, it yields a histogram.
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Steps to construct a histogram

1. Select an initial observation t0 and a bandwidth/window h

2. break data into bins of width 2h, where the first bin is (t0, t0 +
2h).

3. form rectangles of area the relative frequency = freq/N .

4. The height is freq/(2Nh) (area = (freq/(2Nh)) ·2h = freq/N=relative
frequency).
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The histogram estimate of f (x0), the density of x evaluated at
x0, is:

f̂HIST(x0) =
1

2Nh

N∑
i=1

1(x0 − h < xi < x0 + h)

Or:

f̂HIST(x0) =
1

Nh

N∑
i=1

1

2
· 1(

∣∣∣∣xi − x0

h

∣∣∣∣ < 1)

It’s easy to see that this is a proper density (always positive
and integrates to 1).
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An example (from Cameron and Trivedi)

Histogram of log wage, N = 175 observations

Histograms can vary quite a lot depending on the number of
bins.

Number of bins in Stata: default is
√
N for N ≤ 861 and

10ln(N)/ln(10) for N>861

Two graphs: default and 30 bins, each of width 2h ≈ 0.20

STATA command:

histogram lnhwage, bin(30)
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Histograms of log wage, with default number of bins and 30 bins.
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Stata code to generate and save some histograms

clear all

set seed -7

set obs 200

gen x = 5*uniform()+5

gen y = 2 + sin(x) + 0.25*rnormal()

la var y ”hours per day”

la var x ”wage”

hist y, graphregion(color(white))

graph export ”hist1a.pdf”, replace

hist y, bin(30) graphregion(color(white))

graph export ”hist2a.pdf”, replace

hist y, bin(5) graphregion(color(white))

graph export ”hist3a.pdf”, replace
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Drawbacks of the Histogram

Two main issues

• Choice of number of bins (or, equivalently, choice of h)

– Increasing J (reducing h) tends to give a histogram that
is only informative about the location of the distinct sam-
ple points.

– Reducing J (increasing h) eventually leads to a com-
pletely uninformative rectangle.

– J may safely be increased if the sample size N also in-
creases.

• Lack of smoothness: The histogram is a step function (even
for continuous variables!) with jumps at the end of each bin.
Thus, it is impossible to incorporate prior information on the
degree of smoothness of a density.

We now present a related method that tries to overcome these
two problems.
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Takeaway
Densities are easy to visualize and interpret, making them ideal

tools for data exploration of continuous random variables.

Parametric and non-parametric estimators of the density.

Histograms: non-parametric estimator of the density

Define equally-sized bins, compute relative frequencies of
these bins.

All the points within the interval share the same value of the
density

Main problems of histograms

We need to specify the number of bins, shape might change
considerably depending on this

Histograms are a step function, they are not smooth
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4. Kernel density estimate

An alternative way of estimating densities

It can be thought as a “smooth” version of the histogram

Intuition

Recall the formula for the histogram

f̂HIST(x0) =
1

Nh

N∑
i=1

1

2
· 1(

∣∣∣∣xi − x0

h

∣∣∣∣ < 1)

We could write this expression as

f̂HIST(x0) =
1

Nh

N∑
i=1

w

(
xi − x0

h

)
,w(u) =

{
1
2
, if − 1 ≤ u < 1

0, otherwise
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Interpretation:

w(.) is the uniform density in the interval (-1,1)

this means we’re giving equal weights to the observations

The generalization is now obvious: replace w(.) by an arbitrary
density, K(.)

A Kernel density estimate of f (x0), the density of x evaluated
at x0, is

f̂ (x0) =
1

Nh

N∑
i=1

K(
xi − x0

h
)

K(·) is called a kernel function

K(·) is a density that is symmetric, and unimodal at zero.

h is called the bandwidth or smoothing parameter
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Kernel Function: Intuition

Kernel function:

assigns weights to data points based on their proximity to a
target point, with the weights decreasing as distance increases.

For each point, averages of the neighbouring (weighted) ob-
servations are computed, and this is how smooth estimates are
obtained

Key properties of the Kernel are inherited by the estimate of
the density:

If K is a proper density, then so is f̂ ,

and if K is differentiable up to order r, then so is f̂ (z).
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Kernel Function, II

More formally: The kernel function K (·) is a continuous func-
tion, symmetric around zero, that integrates to unity and satisfies
additional boundedness conditions.

1. K(z) is symmetric around 0 and is continuous.

2.
∫∞
−∞ K(z)dz = 1,

∫∞
−∞ zK(z)dz = 0, and

∫∞
−∞ |K(z)|dz < ∞.

3. Either (a) K(z) = 0 if |z| ≥ z0 for some z0, or (b) |z|K(z) → 0
as |z| → ∞.

4.
∫∞
−∞ z2K(z)dz = κ, where κ is a constant.

(Note: In practice, kernel functions work better if they satisfy con-
dition (3)(a) rather than just the weaker condition (3)(b).

0-31



Examples of Kernels

Uniform (or box or rectangular): 1
2
× 1(|z| < 1)

Triangular (or triangle): (1− |z|)× 1(|z| < 1)

Epanechnikov (or quadratic): 3
4
(1− z2)× 1(|z| < 1)

Quartic (or biweight): 15
16
(1− z2)2 × 1(|z| < 1)

Triweight: 35
32
(1− z2)3 × 1(|z| < 1)

Tricubic: 70
81
(1− |z|3)3 × 1(|z| < 1)

Gaussian (or normal): 1√
2π

exp
(
−z2

2

)
Fourth-order Gaussian: 1

2
(3− z)2 1√

2π
exp

(
−z2

2

)
Fourth-order quartic: 15

16
(3− 10z2 + 7z4)× 1(|z| < 1)

etc.
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Example 1

Uniform kernel:

uses the same weights as a histogram of bin width 2h

but it produces a “running histogram” that is evaluated at all
points in the sample, rather than using fixed bins.

Example 2

Consider K = Φ, where Φ denotes the density of the N (0, 1)
distribution

The kernel estimate of f (x0) may be viewed as the average of
N (N=sample size) points, where the weights are obtained from a
N(0,1) distribution.
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Hence:

the uniform kernel estimate of f (x0) is based only on the
observations that are within h distance from the evaluation point
x0 and assigns them a constant weight,

the Gaussian kernel estimate is based on all the observations
but assigns them a weight that declines exponentially as the dis-
tance from the evaluation point increases
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Implementation

Two choices to be made: choice of h (bandwidth) and choice
of kernel, K(.)

Choice of h is much more important than choice of K(.). (we’ll
see why)
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Choosing the bandwidth

Why does this matter?
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Choosing the bandwidth

Why does this matter?

The bandwidth h:

controls the degree of smoothness or regularity of a density
estimate.

Small values of h tend to produce estimates that are irregular,
while large values of h correspond to very smooth estimates.

Setting h small will reduce bias

Setting h large will increase smoothness.
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Example: histogram and kernel density estimate, STATA
default values
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0 1 2 3 4

Density kdensity y

STATA default is bandwidth=.21; Epanechnikov Kernel
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(STATA code) twoway (hist y, graphregion(color(white))) ///

—— (kdensity y, graphregion(color(white)) lwidth(thick))

graph export ”kernelhist.pdf”, replace
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Example: kernel density estimation with different band-
widths

Epanechnikov kernel, 0.21 is the STATA default
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bandwidth = 0.21 bandwidth = 0.80
bandwidth = 0.05
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STATA code

twoway ///

—— (kdensity y, lwidth(thick) legend(label(1 ”bandwidth = 0.21”)))
///

—— (kdensity y, bw(.80) legend(label(2 ”bandwidth = 0.80”)))
///

—— (kdensity y, bw(.05) legend(label(3 ”bandwidth = 0.05”)))
///

, graphregion(color(white)) xtitle(hourly wage)

graph export ”kernel3.pdf”, replace
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Bandwidth Choice: Optimal bandwidth

Choice of h is key

Choice of h determines bias/smoothness (variance)

A large h over-smooths (less variance) but more bias

A small h under-smooths (more noise/variability) but poten-
tially less bias.

→ Tradeoff between bias and variance
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A natural metric to evaluate performance of ˆf (.): mean-squared
error (MSE)

MSE: (expectation is taken with respect to the density f (x))

MSE[f (x0)] = E[(f (x0)− f̂ (x0))
2]

why is this measure appropriate?

Recall that the MSE can be rewritten as the sum of the variance
of the estimator and the square of the bias

therefore by minimizing this quantity we take into account po-
tential tradeoffs
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Notice that MSE[f (x0)] is a local criterion (defined for x = x0)

Let’s make it global: define MISE, mean integrated squared
error

MISE: a global measure, it’s the integral of the MSE over all
values of x.

MISE(h) =

∫
MSE(f̂ (x0))dx0
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Optimal bandwidth

Optimal bandwidth: minimizes MISE.

Optimal bandwidth: obtained by differentiating MISE(h) with
respect to h and solving for h. It yiedls:

h∗ = δ

(∫
f ′′(x0)

2dx0

)−0.2

N−0.2.

A few considerations

As N → ∞, h∗ → 0. (Why? notice that h∗ = O(N−0.2)).

This means that as the sample grows, we should consider
smaller and smaller intervals around each point (because as N
grows, intervals become more ”dense” in observations).
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The parameter δ is fully determined by the kernel employed.
It’s defined as:

δ =

( ∫
K(z)2dz

(
∫
z2K(z)dz)2

)−0.2

.

The term f ′′(x0) is tricky: it’s the second derivative of the
function we try to estimate!
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Estimation of the optimal bandwidth
Silverman’s Plug-in Bandwidth estimate

To obtain an estimate of the optimal bandwidth we should
replace the ”unknowns” in the previous formula by some estimates.

δ: it’s fully determined by the chosen Kernel (see table for
values)
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The problematic term is f ′′(x0). Why?
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The problematic term is f ′′(x0). Why?

it’s the second derivative of the function why are trying to
estimate!

Proposed solution: Assume X is normal.

For a known f (normal), it’s easy to compute the second deriva-
tive which becomes:

∫
f ′′(x0)2dx0 = 3/8

√
(π)σ5) = .2116/σ5

Under this assumption the optimal bandwidth becomes:

ĥ∗ = 1.364δN−0.2σ

where σ: standard deviation of X.

A plug-in estimate: replace σ by the sample standard deviation
of X, s.
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Estimation of the optimal bandwidth
Silverman’s Plug-in Bandwidth estimate, II

A correction: if there are outliers, s can be too large. This can
make h∗ too large (oversmoothing).

Solution: use an alternative estimator of σ valid for normal
distributions: σ = iqr/1.349, where iqr is the interquartile range.

In practice choose:

min(s, iqr/1.349)

Silverman’s plug-in estimate: then

ĥ∗ = 1.364δN−0.2min(s, iqr/1.349)
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Last remarks on Plug-in estimators

Despite the normality assumption needed to compute f ′′, plug-
in estimates for h work well in practice, especially for symmetric
unimodal densities, even if f (x) is not the normal density.

Nonetheless, one should also check by using variations such
as twice and half the plug-in estimate.

Stata uses this plug-in estimate
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Example 2

Log wage data (same data used in Cameron & Trivedi).

Kernel density of log wage, three values of h

Stata’s default kernel: epanechnikov

default h = 1.364δm/N0.2, m=min (std. dev. (x), interquartil-
erange (x)/1.349), which yiels h=0.21

Other values of h, h=.07 (oversmooths), 0.21 (default) and
.63 (undersmooths)
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Stata code:

kdensity lnhwage, bw(0.21)

graph twoway (kdensity lnhwage, bw(0.21)) ///

(kdensity lnhwage, bw(0.07) clstyle(p2)) ///

(kdensity lnhwage, bw(0.63) clstyle(p3)), legend( label(1 ”Default”)
///

label(2 ”Half default”) label(3 ”Twice default”) ) scale(1.1)
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Choice of Kernel

MISE(h∗) varies little across kernels.

This means that after choosing h∗, choice of kernel is not that
important

Optimal Kernel: Epanechnivkov kernel, though the advantage
is small.
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Example: Kernel comparison
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Do the data look normal?

Add a normal distribution to the previous plot
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STATA code

twoway (kdensity y, epan legend(label(1 Epanechnikov)) lcolor(red)
lw(thick)) ///

—— (kdensity y, rectangle legend(label(2 Rectangle)) lpattern(dash)
lw(thick) ///

lcolor(dkgreen)) ///

—— (kdensity y, gaussian legend(label(3 Gaussian)) lcolor(dknavy))
///

, graphregion(color(white))

graph export ”kernel comparison.pdf”, replace

kdensity y, normal graphregion(color(white)) lwidth(thick)

graph export ”kernel4.pdf”, replace
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Asymptotic properties

How well does the kernel density estimator behaves?

Answering this question for a finite N is very difficult

Solution: consider the behavior for very large N (infinity) and
derive properties in this case.

Two basic properties
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Asymptotic properties

How well does the kernel density estimator behaves?

Answering this question for a finite N is very difficult

Solution: consider the behavior for very large N (infinity) and
derive properties in this case.

Two basic properties

Consistency: if N → ∞, is the estimator “close” to the true
value?

Asymptotic distribution: Provided the above is true, how can
we carry out hypotheses testing?

For this, we need to know the asymptotic distribution
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Consistency
Notice that we’re not estimating parameters, we’re estimating a
whole function. We can define two types of consistency, pointwise
and uniform.

Pointwise Consistency:

The kernel estimator is pointwise consistent at a particular point
(x = x0), if both the bias and variance converge to zero.

then, f̂ (x0)
p→ f (x0) for each x0

This is achieved if h → 0 and Nh → ∞.

Meaning:

As N gets large, we should be focusing on very narrow windows
around x0 (h small)

But we need sufficient points to compute the average at each
point x0 in order to have a consistent estimate (Nh large)
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Consistency, II

Uniform Convergence:

• For estimation of f (x) at all values of x, the stronger condition
of uniform convergence is needed.

• Uniform convergence is defined as:

sup
x0

∣∣f̂ (x0)− f (x0)
∣∣ p−→ 0,

where this condition can be shown to occur if Nh
lnN

→ ∞.

• This requires h larger than for pointwise convergence

Uniform convergence is more stringent than pointwise conver-
gence. h can be larger to achieve uniform convergence.
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Last remarks:

Important: these are conditionals needed to establish the asymp-
totic theory

But for implementation they don’t really provide a guideline
about how to choose h
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Unbiasedness

The kernel density estimator is not unbiased in finite samples:

E(f̂N (x0)) = f (x0) + bN (x0), b(x0) = 2h2f (x0)

∫
z2K(z)dz

but notice if h → 0, this tends to zero so it’s asymptotically unbi-
ased.

However, we will see this term (b(x0)) again when we describe
the asymptotic distribution.
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Asymptotic Normality

What is the asymptotic distribution of the kernel density esti-
mator?

0-65



Asymptotic Normality

What is the asymptotic distribution of the kernel density esti-
mator?

In nonparametric statistics the distributions are often “non-
standard” (i.e., non normal, χ2, t or F).

But: The kernel density estimator is asymptotically normal:

√
Nh(f̂ (x0)− f (x0)− b(x0)))

d→ N

(
0,

∫ ∞

−∞
f (x0)K(z)2dz

)
. (2)

and recall that b(x0) = 2h2f (x0)
∫
z2K(z)dz = O(h2)
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Asymptotic Normality, II

Although normal, the distribution is different from the ones you
are used to seeing in two respects:

The rate of convergence is not
√
N , as usual, but smaller

(
√
Nh)

The bias term b(x0) appears in the asymptotic distribution.
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Slower convergence rate:
√
Nh

Recall that h → 0, therefore,
√
Nh is smaller than

√
N , the

usual rate of convergence of parametric estimators.

What are the implications of slower convergence rates?

Converge to the normal distribution is slower, which means
that in small samples the normal critical values might not very
accurate.

Why? There are terms in the distribution function that con-
verge to zero at a slow rate, so a very large N is needed for them
to become negligible.
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The bias term:
√
Nhb(x0)

What’s the behaviour of the term
√
Nhb(x0) that appears in

the asymptotic distribution?

Recall that N → ∞, and b(x0) = O(h2), so b(x0) → 0 if h → 0,
therefore the answer is not obvious (i.e., the limit of the product
of ∞ and zero is not obvious).

Short answer: it depends.

Medium-length answer: depending on the speed of convergence
of h to zero,

√
Nhb(x0) can go to zero, it can converge to a bounded

quantity or it can go to infinity!

Why? consider a few examples
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Example 1. Choose h as the optimal predictor, h∗

Recall:

h∗ = 1.364δN0.2σ, which implies that h∗ = O(N−0.2)

Recall that b(x0) = O((h∗)2) = O(N−0.4), i.e.

Interpretation: if the optimal bandwidth h∗ is employed, then
b(x0) tends to zero at a rate N .4

Hence, the term
√
Nhb(x0) = O(N0.4)O(N−0.4) = O(1)

Interpretation: if h∗ is employed, then
√
Nhb(x0) converges to

a bounded quantity, different from zero.

Therefore: the asymptotic distribution is not centered around
the true value f (x0) but around f (x0) + b(x0)!
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Example 2: undersmoothing

Recall that undersmoothing implies choosing a value of h smaller
than h∗.

Consider for instance, h = O(N−0.3). This tends to 0, and
quicker (it’s then smaller).

Then, what’s the limit of
√
Nhb(x0):

√
Nhb(x0) = O(N0.35)O(N−0.6) →?
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Example 3: oversmoothing

Choose now h = O(N−.1)

h tends to zero at a slower rate than h∗, therefore, it’s larger:
oversmoothing.

Derive what happens in this case with the previous product.
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Confidence intervals

Kernel density estimates are usually presented without confi-
dence intervals.

But it is possible to construct pointwise confidence intervals for
f (x0), where pointwise means evaluated at a particular value of x0.

How to do it:

Select a number of evaluation points x0, that are evenly dis-
tributed over the range of x

plot these along with the estimated density curves.

(In principle) a 95% confidence interval for f (x0):

f (x0) ∈
(
f̂ (x0)− b(x0)± 1.96×

√
1

√
Nh

f̂ (x0)

∫
K(z)2dz

)
.
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But...some problems

Problem 1:

The bias: b(x0) is part of the confidence interval!

Solutions

1. Ignore the bias. But then then the CI is not centered (not a
great solution)

2. Estimate f (x0) but use a different h (undersmoothing) to esti-
mate the CI

3. Estimate the bias and correct for it. But the estimate is noisy,
so this is not great.

See Cameron and Trivedi for additional details.

4. Bootstrapping
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Problem 2: Slow convergence rates⇒ Normal critical values not
very accurate for finite N.

Solution: Use bootstrap
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Note: But...What is boostrap?

Alternative to using asymptotic distribution

Uses resampling from a given data set to estimate the sampling
distribution of a statistic (i.e., finite sample distribution).

In practice, bootstrap

1) draws a random sample with replacement from the original data
set,

2) calculates the statistic of interest (density at x0 in this case);

3) repeats this many times to generate a large number of resam-
ples.

The distribution of the statistic across these resamples is used
to estimate the sampling distribution of the statistic.
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Confidence Bands in STATA

The native command in STATA, Kdensity, doesn’t allow you
to do that

But you can install Kdens

ssc install kdens
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Examples: three types of confidence bands

order: Asymptotic distribution, bootstrap and jacknife
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STATA code

ssc install kdens

kdens y, ci vce(bootstrap, reps(200))

kdens y, ci usmooth

kdens y, ci vce(jackknife)
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Multivariate Kernel density estimation:
Conceptually it’s straightforward to extend univariate nonpara-

metric methods to multivariate settings.

Consider the multivariate variable x, which now is a vector of
dimension k× 1. Then

f̂ (x0) =
1

Nhk

N∑
i=1

(
xi − x0

h
)

In practice it is problematic for at least two reasons:

1. A practical issue:

Nonparametric methods are typically represented graphically.

How to represent the results of a nonparametric analysis involv-
ing two or more variables is an important practical problem.
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2. curse-of-dimensionality problem. when one-dimensional non-
parametric methods are generalized to higher dimensions, their
statistical properties deteriorate very rapidly because of the so-
called

The curse-of-dimensionality refers to the fact that the vol-
ume of data required to maintain a tolerable degree of statistical
precision grows much faster than the number of variables under
examination.

For these reasons, simple generalizations of one-dimensional
methods to the case of more than two or three variables tend to
produce results that are difficult to represent and are too irregular,
unless the size of the available data is very large.
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Takeaway

This handout: Nonparametric methods for density estimation

Kernel estimates are easy to compute and work well in practice

Choosing h, the bandwidth, is very important

Once h is chosen, the choice of kernel is less important

Statistical properties are worse that parametric methods: bi-
ases, lower rates of converge...

Biased confidence bands if asymp. distribution is used. Other
methods available

Curse of dimensionality, when multiple variables are considered
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