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1. Introduction

So far in this course (and probably in all your previous metrics
courses): interest in conditional expectation

This makes sense BUT

B WwWe can be interested in other characteristics of the distribution
of the outcome variable

For example: distribution of income

m \We can be interested in the drivers of income per capita; (con-
ditional expectation)

m But this is only part of the story!

m Understanding inequality; poverty, etc. involves understanding
things that happen away from the center of the distribution



This handout: focuses on the quantiles of the distribution of
Y given X.

¢, Quantile: The 7, quantile of the distribution of Y is the
value g, for which a fraction of the population has a value of Y
smaller than gq-.

Conditional 7, quantile: The 7, conditional quantile of the
distribution of Y given X=x is the value g, for which a fraction of
the population for which X = x has a value of Y smaller than g¢..



Many interesting research questions

Example: what drives the inequality increase in the US? i.e.,
the poor getting poorer and the rich getting richer.

FIGURE I. - DistriBuTION OF U.S. MALE WaGES (1980-2000)
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NoTE: Light gray: 1980; gray: 1990; dark gray: 2000. Sample restricted to working male aged
16 to 65 who worked at least 20 weeks during the reference year and at least 10 hours per week.
Hourly wages are expressed in (log) US$ of year 2000. Data source: U.S. Census.

TABLE 1—UNCONDITIONAL QUANTILES FOR WAGES (1980-2000)

Percentile:
Year 10th 25th 50th 75th 90th
1980 1.96 2.41 2.84 3.18 3.50
1990 1.86 2.30 2.76 3.15 3.51
2000 1.83 2.27 2.70 3.15 3.55

Note: Sample restricted to working male aged 16 to 65 who worked at least 20 weeks during the reference
year and at least 10 hours per week. Hourly wages are expressed in (log) US$ of year 2000. Data source:
U.S. Census.

(Graphs from Joan Llull's course materials)



Quantile regression has been used in a broad range of applica-
tion settings, whenever understanding things at the *“tails”, not at
the center of the distribution is key

m In economics: wage determinants, discrimination effects, trends
in income inequality and poverty; student performance at the tails,

m climate change: we're not only interested in average increases
in temperature but also understanding what drives this increase
(what places iare heating up quicker, colder or hotter ones (un-
conditional quantiles), and how covariates affect the increase at
different points in the distribution (conditional quantiles)

m behavior, health, ...: whenever we want to understand what
drives “extreme” behavior, the tails of the distribution.

m For instance: drivers of low weights in newborns.



A quick preview of what's coming: quantile regression, birth
weight on covariates and wages as a function of education

(from Mostly harmless Econometrics)

Quantile Regression 273

TaBLE 7.1.1
gression coefficients for schooling in the 1980,

tile re
Quan 1990, and 2000 censuses

Quantile Regression Estimates
0.1 025 05 075 0.9 Coeff. Root MSE

Desc. Stats. OLS Estimates

ensus Obs. Mean SD
67 .074 074 .068 070 .079 .072 .63

(:002) (.001) (.001) (.001) (.001) (.001)

990 86,785 6.5 .69 112 110 .106 111 137 114 64
(.003) (.001) (.001) (.001) (.003) (.001)

75 .092 105 11 120 157 114 .69
(.002) (.001) (.001) (.001) (.004) (.001)

Potes Ada,pmd from Angrist, Chernozhukov, and Fernandez-Val (2006). The table
;‘Pﬁrts quanFlle regression estimates of the returns to schooling in a model for log wages,
qlti b(l) L3 estimates shown at the right for comparison. The sample includes U.S.-born white
1d black men aged 40—49. The sample size and the mean and standard deviation of log

ages in :
BesIn each census extract are shown at the left. Standard errors are reported in paren-
ial experience. Sampling weights were used

050 65,023 6.4

2000 97,397 6.5

leses,
p hs All models control for race and potent
e 2000 Census estimates



(from Koenker and Hallock, 2001)
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Roadmap

1. Preliminaries: Unconditional Quantiles
1.1. Estimation

1.2. Standard errors
2. Conditional Quantiles
3. Quantile Regression: Motivation
4. Quantile Regression: Generalization. Examples

5. Censored Quantile Regression



1. Preliminaries: Unconditional Quantiles
Definition: What is a quantile ¢-(Y)?

m Let Fy(y) be the cumulative distribution function (cdf) of Y.
m  The 7th quantile of Y, ¢-(Y), solves
Flgr(Y)) =7

or equivalently:

¢ (Y) = F Y1) =inf{r: F(r) > 7},

(this is a generalized inverse function, as F(.) is not strictly in-
creasing for discrete variables)

m The distribution of Y is fully characterized by {q¢-(Y),7 € (0,1}



You can see the quantiles just by rotating the CDF!
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Another way of writing quantiles: the check function

m Introduce the check function:

(u) = T |u| if u >0
P =Y (=D ifu<0

m It's called like this because it looks like a checkmark:

p(u)

FIGURE 1. Quantile Regression p Function



What is this function doing:

m T he check function assigns asymmetric weights to observations
larger or smaller than zero, = and 1 — 7.

m In one case, weights are symmetric: 7 = .5 (median)
Why is this function useful:

m It can be shown that the quantile = can be obtained by mini-
mizing the expected value of the check function with respect to e
(i.e., gr is the value of ¢ that minimizes this function):

qr = argmineE(p (Y —¢€))



m This fact is not immediately trivial, you can find the proof here,

pag 3.)

m T he proof is not required but it's copied below for your conve-

nience:

+o00
B(p(X-8)= [ p(X-¢) dF()

3 +o0
:<r—1>/_ (yc—s)czF(a:)H/5 (z - €) dF ()

Differentiating this expectation with respect to &,

i 3 3 3 3
(r—1) (L xdF(av)—f/~ alF(:z:))—'r(/+ zdF(z) —¢& A dF(:IZ))

£ +o0
(,,_1)/_ (av—s)olF(a:)M/5 (z — ) dF(z)

+o0

£ 3
= (r—1) (Ef(f) —efe) 1. /_ dF(a:)) —r <§f(£) _Ef(6) - 1. / dF(x))

= (1= D(=F(&) - (1 - F(€))
—F-r


https://core.ac.uk/download/pdf/268632093.pdf

Some “famous’ quantiles

Median: 7 = .5

First, second and third Quartiles: = ={0.25,0.5,0.75}

Percentiles: 7 = {0.01,0.02,...,0.99}

Deciles: 7 =4{0.1,0.2,...,0.9}



1.1. Estimation of the unconditional Quantiles: Sample
quantiles

Consider a sample y1,...,yn. We can compute sample quan-
tiles in two ways.

1. Using the empirical cumulative distribution function:
| N
Fy(r)=—> 1(yi <),
N 4
=1
A 4 —1 . 4
¢ (Y)=Fy (7)=inf{r: Fy(r) > 71},
where 1(-) is the indicator function

m computationally very costly as it implies ordering all observa-
tions and picking the first observation that leaves at least a fraction

7 of the sample below it.



2. Using the check function:

The sample analogue of ¢ may be found by solving,

N
Gr(Y) = argmin » _ pr(y; —€) =
© =1

N N
argmin Z T|y; — €| + Z (1 —7)|y; — €.
€

Yi € yi<e

where argmin, denotes the value of € that minimizes the sum.

m T he asymmetry of the weights employed in the check function,
allows us to pick up the quantiles for different values of



1.2. Computing standard errors

Standard errors can be computed using 1) the asymptotic ap-
proximation or 2) bootstrap

1. Asymptotic approximation:

VN (@ (Y) = gr (V) B N (o, | f(gl(‘y);]) (1)

where f(-) is the probability density function of the distribution
F(-).

2. Bootstrap: more employed in applications than A.D.



2. Conditional Quantiles

In econometrics we're typically interested in relating different
variables

m T his handout is not an exception: we are interested in condi-
tional quantiles: quantiles of the distribution of Y given X =«

Conditional quantile: a measure of location that describes a
particular point in the distribution of a response variable Y, given
a specific value of one or more predictor variables X.



Specifically, the conditional 7th quantile of Y given X = x, de-
noted ¢ (Y|X = z), is the smallest value y such that the probability
of Y being less than or equal to vy, given X=x, is at least r. In
other words, ¢,(Y|X = z) is the value of y such that:

PY<yX=z)<7t and PY >yl X=2)>1-r,

where 0 < 7 <1 is the quantile level.

m  Or we can use a slightly different notation: Let Fy x_,(y) be
the conditional cumulative distribution function (cdf) of Y given
X =x. The 7th conditional quantile of Y, ¢-, solves

Fy|x—z(qr) =T

or equivalently:

- (Y[X =2) = F;&:x(T)



Quantile Regression: Motivation

As mentioned earlier, analysis of the conditional expectation
only provides a partial view of the relationship among variables.

In some applications we might be interested in understanding
this relationship at different points in the conditional distribution

Quantile Regression (QR) is a statistical tool for building such
a picture.



A few reasons why QR can be very useful.

m Provides information on the relationship between Y and X at
many points of the distribution of Y| X

B QR is robust against outliers; also robust to departures from
normality

m QR provides a potentially richer characterization of the data

m It'’s invariant to monotonic transformations: the quantile of Y
is identical to the quantile of g(Y) if g(.) is monotone.



More on motivation: an example
Koenker and Hallock (JEP, 2001)

m Variables: Y log of Annual compensation for the chief executive
officer (CEQO); X firm's market value of equity.

m A sample of 1,660 firms was split into ten groups (deciles)
according to their market capitalization (X variable).

m For each group of 166 firms, compute the three quartiles of
CEO compensation, the median (middle bar in each rectangle) ,
the mean (arithmetic mean 4, geometric mean *)

m Plot boxplots for each of the deciles



Note: Recall the information provided by a Box plot

Box Plot

(aka Box & Whisker Diagram)
www.six-sigma-material.com

* These outliers are single data
e points that are >1.5x value of UQ

Upper Whisker = Q3 + 1.5(IR)

Q3 or Upper Quartile (UQ) —
75% of data points are under Q3
when arranged in increasing order

Median = Q2

Q1 or Lower Quartile (LQ) —
25% of data points are under Q1
when arranged in increasing order

S—— Lower Whisker = Q1 - 1.5(IR)

o This outlier is a single data point
that are <1.5x value of LQ

The Interquartile Range (IR) = Q3-Q1




Koenker and Hallock (JEP, 2001)
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Notes: The boxplots provide a summary of the distribution of CEO annual compensation for ten
groupings of firms ranked by market capitalization. The light gray vertical lines demarcate the
deciles of the firm size groupings. The upper and lower limits of the boxes represent the first and
third quartiles of pay. The median for each group is represented by the horizontal bar in the middle
of each box.

Source: Data on CEO annual compensation from EXECUCOMP in 1999.



What do you see in the graph?

Clear tendency of average/median compensation to go up with
firm size

m But other things going on in other aspects of the distribution

= Even on the log scale, there is a tendency for dispersion,
as measured by the interquartile range of log compensation, to
increase with firm size.

m By characterizing the entire distribution of annual compensa-
tion for each group, the plot provides a much more complete pic-
ture than would be offered by simply plotting the group means or
medians.



Now, consider the different estimation methods you know.
What do they do?

m Nonparametric estimation of the conditional mean: a flexible
function estimating the means at different values of size, as firm
sizes grows (i.e, a function that “joins” the +'s)

m Parametric OLS: assume a linear function for the +'s, estimate
the parameters £g, 81 of this line

m Quantile regression: will allows us to look at any aspect of the
distribution, as firm size grows. We will be able to estimation of
conditional quantiles of log compensation as firm size increases.



First example of QR: Median regression

We can derive the QR estimator in a similar way as in the
conditional expectation case.

Recall an important theorem: If the loss function is the MSE,
then the best way of predicting Y using X is E(Y|X), i.e.,

E(Y|X) = argmin,,E(Y — m(X))?
m This result depends on the loss function employed: MSE

Consider a different loss function: Absolute-error loss function.
What's the best g(X) to predict Y if the loss function is:

MAE = E|Y — g(X)|

m  Answer: conditional median, g(X) = med(Y|X)



Parametric assumptions on E(Y|X) and med(Y|X)

In general both E(Y|X) and med(Y|X) are unspecified nonlinear
functions

m If we assume that E(Y|X) is linear, then E(Y|X) = X'p

B We can make a similar assumption in the case of the median,
med(Y|X) = X'p

B If med(Y|X) is linear — med(Y|X) = X’'B, — the optimal predic-
tor is

Y =X'B,

where § is the least absolute-deviations estimator that minimizes



Pros/cons of OLS vs. LAD

Both OLS and LAD look at the evolution of central values of
the distribution (averages or medians)

m OLS: non robust (very influenced by outliers). Why? by squar-
ing the residuals, gives more weight to large residuals, that is,
outliers in which predicted values are far from actual observations.

m LAD: robust to outliers. Why? LAD gives equal emphasis to
all observations

m OLS: unique, stable, close-form solution.

m LAD: no closed-form solution (lack of differentiability of the
objective function, no analytical method to optimize the function),
unstable solution, possibly not unique solution



Quantile regression: generalization

The (parametric) quantile regression model:

qr(Y|X) = X'Br

Meaning: the condicional quantile 7 is assumed to be a linear
function of X

m Notice two features of this model:

« Linearity: This is a parametric model (but nonparametric
extensions are possible)

= Effects change across quantiles: the vector of coefficients G-
varies with 7



The conditional quantile can be obtained (as in the uncondi-
tional case) by minimizing the check function:

¢ (Y|X) = argming(x)E(pT (Y —g(z)))

and if g(x) = X’'B; then

Br = argminyE(p- (Y — X'b))



Quantile Regression Estimator

Recall that

r = argminyg E(p-(Y — X'b)) (1)

Quantile regression estimator 3,: sample analog of 8

Br — argmin E pr(|Y — X'b|)
b :
1=1



m Check function is not differentiable, then optimization is not
done the usual way (deriving, equating to zero, etc)

m No analytical closed-form solution.

m linear programming methods (simplex) (computationally sim-
ple).



Intepretation of QR coefficients

Estimation of QR models is easy, understanding what’'s going
on is a bit trickier

m Consider this example: effect of a training program on wages.
We find that 81 = 10%

m What's the meaning of this?

Quantile coefficients tell us about effects on distributions, not
on individuals

m Then, it doesn’'t mean that someone that was poor after the
training program will be 10% richer

m It only means that the poor with training are less poor than the
poor without training.



Why is that?

m Imagine that the training program is rank preserving (i.e., the
order of the individuals is not altered after the program, they all
get richer but keep their relative positions)

m Then, we could give to B, the “individual’ interpretation

But in general, we don’'t know whether an intervention is rank
preserving or not

m In this case, we can only say that the poor (bottom 10%),
(whoever they are) are better off



Interpreting coefficients: Marginal effects

Recall

q-(Y|X) = X'B-
Marginal effect (changes are infinitesimal)

0X; "

ME is given by the slope coefficient (as in OLS)

Discrete changes (larger than infinitesimal)

m A bit delicate: when we move z; we can change the quantile!

B We need to make the assumption that by moving z; individuals
don’'t change the quantile!



Example 1a
A simple case: X is a binary variable

m Question: medical expenditures with and without supplemen-
tary insurance?

m Data are from Cameron and Trivedi (2009, ch.7).

m Sample: men 65 and older who are in Medicare
« VY = ltotexp = log(total medical expenditure in 2003)
= N = 2955 after drop 109 with zero expenditure
= Suppins = 1 if have supplementary medical insurance
= 58% have supplementary insurance
« Mmay cover pharmaceutical drugs (not covered by Medicare)

= May cover copays and coinsurance under regular Medicare



Let's look at the mean of the conditional distributions (sup-
pins=1/0) bysort suppins: sum totexp ltotexp

@ Sample means are substantially higher with supplementary insurance.

@ Standard deviations are higher in levels but not logs.

Suppins =1 Suppins =0

Means Levels 7470 6420 +16%
Logs 8.17 7.91 +26%

St.Devs. Levels 12300 11200 +10%
Logs 1.30 1.45 —15%

m But, where is the action?



Let's plot the two conditional densities:

graph twoway (kdensity Itotexp if suppins == 1) (kdensity Itotexp if suppins == 0, Istyle(p2)), /// legend(
label(1 "suppins==1") label(2 "suppins==0"))

More action at lower levels of expenditures

kdensity Iltotexp
2 3
1

A

T T T T T T
2 4 6 8 10 12
X

suppins==1 suppins==0

m Interpretation: Individuals in the lower quartiles of expenditure
have higher medical expenditure than individuals in the lower quar-
tiles with no additional insurance



By how much? compare different percentiles

@ Obtain percentiles of the upper curve in previous slide

centile ltotexp if suppins==1, centile(10 50 90)
Variable O0Obs Percentile Centile [95% Conf. Interval]
ltotexp 1748 10 6.571299 6.457681, 6.673633
50 8.202071 38.146281, 8.258152
90 9.771977 9.665329, 9.886245

@ Obtain percentiles of the lower curve in previous slide

centile ltotexp if suppins==0, centile(10 50 90)

Variable O0Obs Percentile
ltotexp 1748 10
50

90

Centile ([95% Conf. Interval]
6.056784 5.880274, 6.27851
7.929846 7.843799, 8.019941
9.796142 9.65716, 9.96981



Variable 0Obs Percentile Difference

ltotexp 1748 10 6.571299 — 6.056784 514515
50 8.202071 — 7.929846 272225
90 9.771977 — 9.796142 = —.024165



Now, let’'s use quantile regression.

STATA command: QR

m Specify one quantile. Default is .5

QR, first decile
areg Itotexp suppins, q(.1)

. qreg ltotexp suppins, q(.1)
Iteration 1: WLS sum of weighted deviations = 1406.8882

Iteration 1: sum of abs. weighted deviations = 1407.3463
Iteration 2: sum of abs. weighted deviations = 1038.0529
Iteration 3: sum of abs. weighted deviations = 758.17886

.1 Quantile regression Number of obs = 2,955

Raw sum of deviations 767.2206 (about 6.3613024)

Min sum of deviations 758.1789 Pseudo R2 = 0.0118
ltotexp | Coefficient Std. err. t P>|t| [95% conf. intervall
suppins .5154982 .107634 4.79 0.000 .3044528 .7265435

_cons 6.056784 .0827831 73.16 0.000 5.894466 6.219103




Interpretation:

m Slope: first decile of log expenditures is .51 larger for people
with additional insurance

m Constant: is 10th percentile when suppins=0.

(i.e., slope+constant gives the first decile if suppins=1)



Estimate several quantile differences

Stata command: sqreg

heteroskedastic robust standard errors (bootstrap):

. sqreg ltotexp suppins, q(.1 .5 .9) reps(100) nodots

Simultaneous quantile regression Number of obs = 2,955
bootstrap(100) SEs .10 Pseudo R2 = 0.0118
.50 Pseudo R2 = 0.0058
.90 Pseudo R2 = 0.0000
Bootstrap

ltotexp | Coefficient std. err. t P>|t| [95% conf. interval]

qle
suppins .5154982 .1097219 4.70 0.000 .300359 .7306373
_cons 6.056784 .0932166 64.98 0.000 5.874008 6.23956

q50
suppins .2715392 .054371 4.99 0.000 .1649303 .3781481
_cons 7.929846 .0440659 179.95 0.000 7.843443 8.016249

q90
suppins -.0227232 .0958235 -0.24 0.813 -.2106108 .1651644
_cons 9.794621 .0774467 126.47 0.000 9.642766 9.946475




Example 1b

X: discrete variable

totchr: Number of Chronic conditions

totchr takes 7 values

tabulate totchr

# of
chronic
problems Freq. Percent Cum.
0 466 15.77 15.77
1 865 29.27 45.04
2 809 27.38 72.42
3 506 17.12 89.54
4 222 7.51 97.06
5 69 2.34 99.39
6 15 0.51 99.90
7 3 0.10 100.00
Total 2,955 100.00



Plot conditional quantiles (one line for each value of totchr)

gplot Itotexp, over(totchr) recast(line) scale(1.1)

12

10 P ——

In(totexp) if totexp > 0

T T T T T
0 2 4 .6 8 1
fraction of the data

[e22NF N \V)
N o w =




Quantile regression, quantile .1

greg Itotexp totchr, q(.1) nolog

qreg ltotexp totchr, q(.1) nolog

1 Quantile regression Number of obs = 2,955
Raw sum of deviations 767.2206 (about 6.3613024)
Min sum of deviations 653.1636 Pseudo R2 = 0.1487
ltotexp Coefficient Std. err. t P>|t| [95% conf. intervall
totchr .5674899 .032122 17.67 0.000 .5045061 .6304737
_cons 5.500936 .0714468 76.99 0.000 5.360845 5.641026

m Interpretation: The 10th conditional quantile of Itotexp in-
creases by 0.57 with each extra chronic condition

m very large effect.



We could create one dummy for each of the values of totchr
and run the model:

quietly tabulate totchr, generate(dtotchr)

drop dtotchrl

greg ltotexp dtotchr*, q(.1) nolog

B Omitted category: no chronic condition

. qreg ltotexp dtotchrx, q(.1) nolog

.1 Quantile regression Number of obs = 2,955
Raw sum of deviations 767.2206 (about 6.3613024)
Min sum of deviations 641.1541 Pseudo R2 = 0.1643
ltotexp | Coefficient Std. err. t P>|t] [95% conf. interval]
dtotchr2 .9209313 .1085837 8.48 0.000 .7080238 1.133839
dtotchr3 1.716309 .1098916 15.62 0.000 1.500837 1.931781
dtotchr4 2.236495 .1213225 18.43 0.000 1.99861 2.47438
dtotchr5 2.516852 .1540995 16.33 0.000 2.214699 2.819006
dtotchré 2.947189 .2437451 12.09 0.000 2.469262 3.425117
dtotchr7 3.335108 .4956903 6.73 0.000 2.363174 4.307042
dtotchrs8 3.418108 1.094484 3.12 0.002 1.272078 5.564138
_cons 5.147494 .0875354 58.80 0.000 4.975858 5.319131




We can also estimate many quantiles

. sqreg ltotexp totchr, q(.1 .5 .9) reps(100) nodots

Simultaneous quantile regression Number of obs = 2,955
bootstrap(100) SEs .10 Pseudo R2 = 0.1487
.50 Pseudo R2 = 0.0903
.90 Pseudo R2 = 0.0646
Bootstrap

ltotexp | Coefficient std. err. t P>|t| [95% conf. interval]

qle
totchr .5674899 .0258605 21.94 0.000 .5167834 .6181964
_cons 5.500936 .0725731 75.80 0.000 5.358637 5.643235

q50
totchr .3932115 .0195693 20.09 0.000 .3548407 .4315823
_cons 7.347944 .0527086 139.41 0.000 7.244594 7.451293

q90
totchr .3762154 .0286877 13.11 0.000 .3199655 .4324652
_cons 8.956738 .0816227 109.73 0.000 8.796694 9.116781




Many variables.

. sqreg ltotexp suppins totchr age female white, q(.1 .5 .9) reps(100) nodots

Simultaneous quantile regression Number of obs = 2,955
bootstrap(100) SEs .10 Pseudo R2 = 0.1640
.50 Pseudo R2 = 0.1009
.90 Pseudo R2 = 0.0687
Bootstrap

ltotexp | Coefficient std. err. t P>|t| [95% conf. interval]

qle
suppins .3957205 .0690543 5.73 0.000 .260321 .53112
totchr .5391863 .0270711 19.92 0.000 .4861061 .5922665
age .0192688 .0048859 3.94 0.000 .0096888 .0288489
female -.0127282 .0806778 -0.16 0.875 -.1709188 .1454623
white .0734392 .1826637 0.40 0.688 -.2847221 .4316006
_cons 3.867043 .4040991 9.57 0.000 3.074698 4.659388

q50
suppins .2769771 .0579011 4.78 0.000 .1634465 .3905077
totchr .3942664 .0218798 18.02 0.000 .3513651 .4371676
age .0148666 .0040762 3.65 0.000 .0068741 .022859
female -.0880967 .060479 -1.46 0.145 -.2066821 .0304887
white .4987457 .2304944 2.16 0.031 .0467995 .9506918
_cons 5.648891 .3507786 16.10 0.000 4.961095 6.336686

q90
suppins -.0142829 .0896351 -0.16 0.873 -.1900366 .1614708
totchr .3579524 .0304578 11.75 0.000 .2982317 .4176731
age .0059236 .0072497 0.82 0.414 -.0082914 .0201386
female -.1576335 .0786056 -2.01 0.045 -.3117608 -.0035061
white .3052239 .2369514 1.29 0.198 -.159383 .7698308
_cons 8.32264 .5399526 15.41 0.000 7.263918 9.381362




Interpretation

m ql0 coefficient of suppins: Holding the number of chronic con-
ditions, age, gender and race constant, if we compare people with
and without supplementary health insurance, the 10th percentile
of log expenditure is 0.396 higher for those with supplementary
health insurance.



More on interpretation: Retransformation

We're computing marginal effects for log expenditures, not for
expenditures

Equivalence property of QR (notice how you can’t do this with
expectations!):

qr(Y|X) = expgr(logY| X)) = exp(X'B;)

Then, if we want to compute marginal effects with respect to
Y (not with respect to log Y):

aCIT(Y| )

ox, = <oP(X'Br)Br,




quietly predict xb

gen expxk=exp(xb)

display " Multiplier of QR in logs coeffs to get AME in levels =" r(mean)



Graphical display of coefficients over quantiles
STATA command: grqgreg

ssc install grgreg

bsqreg Itotexp suppins totchr age , reps(100)

grgreg, cons ci ols olsci title(constant suppins totchr age)
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Horizontal line: OLS point estimates and CI (constant across
quantiles)



