Topics in Applied Econometrics for Public Policy

Master in Economics of Public Policy, BSE

Handout 4: Semiparametric Regression

Laura Mayoral

IAE and BSE

Barcelona, Spring 2023

1. Introduction

Previous handouts: regression models without any structure.

This gives a lot of flexibility but it also has some limitations :

Sometimes, theory may place some structure on the data. We might want to incorporate this information in the model

 We can only include in the analysis a relative small set of variables (curse of dimensionality)

 ...but incorporating many variables might be needed to avoid endogeneity of regressors

This lecture: Semiparametric methods

Semiparametric models: examples (from Cameron&Trivedi)

Many semiparametric models and many methods to estimate them. This is only a short intro to these methods.

Name	Model	Parametric	Nonparametric
Partially linear	$\mathrm{E}[y \mathbf{x},\mathbf{z}] = \mathbf{x}'\boldsymbol{\beta} + \lambda(\mathbf{z})$	$oldsymbol{eta}$	$\lambda(\cdot)$
Single index	$\mathbf{E}[y \mathbf{x}] = g(\mathbf{x}'\boldsymbol{\beta})$	$\boldsymbol{\beta}$	$g(\cdot)$
Generalized partial	$\mathbf{E}[y \mathbf{x}, \mathbf{z}] = g(\mathbf{x}'\boldsymbol{\beta} + \lambda(\mathbf{z}))$	\boldsymbol{eta}	$g(\cdot),\lambda(\cdot)$
linear			
Generalized additive	$\mathbf{E}\left[\mathbf{y} \mathbf{x}\right] = c + \sum_{j=1}^{k} g_j(x_j)$	_	$g_j(\cdot)$
Partial additive	$\mathbf{E}[y \mathbf{x}, \mathbf{z}] = \mathbf{x}'\boldsymbol{\beta} + c + \sum_{j=1}^{k} g_j(z_j)$	$oldsymbol{eta}$	$g_j(\cdot)$
Projection pursuit	$\mathbf{E}[y \mathbf{x}] = \sum_{j=1}^{M} g_j(\mathbf{x}'_j \boldsymbol{\beta}_j)$	$\boldsymbol{\beta}_{i}$	$g_j(\cdot)$
Heteroskedastic	$\mathbf{E}[y \mathbf{x}] = \mathbf{x}'\boldsymbol{\beta}; \mathbf{V}[y \mathbf{x}] = \sigma^2(\mathbf{x})$	$\dot{oldsymbol{eta}}$	$\sigma^2(\cdot)$
linear			

 Table 9.2. Semiparametric Models: Leading Examples

are identified. For example, see the discussion of single-index models. In addition to estimation of β , interest also lies in the marginal effects such as $\partial E[y|\mathbf{x}, \mathbf{z}]/\partial \mathbf{x}$.

Roadmap

- 1. Partially Linear Models
- 2. Single Index Models
- 3. Summary, other models exist ...

Partially Linear Model

Partially Linear Model: conditional mean is a linear regression function plus an unspecified nonlinear component.

 $E[y|x,z] = x\beta + \lambda(z) \quad \lambda(.)$ unspecified.

Model to be estimated:

$$y = x\beta + \lambda(z) + u, \quad E(u|x,z) = 0.$$
(1)

Estimation Method: Robinson Difference Estimator

We will obtain estimates for β and for λ in two steps

Step 1: get rid of $\lambda(z)$ and estimate β (only)

Step 2: Use the estimates of β in a model that will allow us to obtain an estimate for $\lambda(.)$

Robinson Difference Estimator

Step 1: A) get rid of $\lambda(.)$, B) estimate β

A) get rid of lambda:

Take conditional expectations (by z) on both sides of Model 1 (and notice that E(u|z) = 0):

$$E[y|z] = E[x|z]'\beta + \lambda(z)$$
(2)

Subtract the two equations -eq (1) and eq (2)- and obtain the model:

$$y - E[y|z] = (x - E[x|z])'\beta + u$$
 (3)

The conditional moments E[y|z] and E[x|z] are unknown \Rightarrow Replace them by non parametric estimators \hat{m}_{y_i} and \hat{m}_{x_i}

Robinson's difference estimator:

Step 1: B) estimate β in the model

$$y - \hat{m}_{y_i} = (x - \hat{m}_{x_i})'\beta + u$$
 (4)

The resulting estimator of β is consistent and A.N (assuming u is i.i.d.):

$$\sqrt{N}(\hat{\beta}_{PL} - \beta) \xrightarrow{d} N(0, \sigma^2 \left(\text{ plim } \frac{1}{N} \sum_{i=1}^{N} (x_i - E[x_i|z_i])(x_i - E(x_i|z_i)' \right)^{-1}$$

Notes:

1. Cost of non-specifying λ ? higher variance (efficiency loss) [But no loss if E(x—z) is linear!]

2. The distribution assumes homokedasticity (u is i.i.d). Use Eicker-White standard errors to make it robust to heteroskedasticity

Notes (cont).:

- 3. To estimate the variance: replace $(x_i E[x_i|z_i])$ by $(x_i \hat{m}_{x_i})$
- 4. How to compute \hat{m}_{x_i} and \hat{m}_{y_i} ?

Robinson: Kernel estimates with convergence no slower than $N^{-1/4}$.

Step 2: Estimate λ

- Recall that $\lambda(z) = E(y|z) E(x|z)'\beta$.
- Estimate $\lambda(z)$ as

$$\hat{\lambda}(z) = \hat{m}_{y_i} - \hat{m}'_{x_i} eta$$

Summarizing: Robinson difference estimator

Model: $E[y_i|x_i, z_i] = x'_i\beta + \lambda(z_i)$, unspecied $\lambda(\cdot)$

Steps:

- 1. Kernel regress y on z and get residual $y \hat{y}$.
- 2. Kernel regress x on z and get residual $x \hat{x}$.
- 3. OLS regress $y \hat{y}$ on $x \hat{x}$, get $\hat{\beta}$
- 4. Combine the estimates in 1) 2) and 3) to get $\hat{\lambda}(z) = \hat{m}_{y_i} \hat{m}'_{x_i}\hat{\beta}$

An example

Same data as before: now, wage on marital status and education.

Let's look first at the OLS:

lnhwage	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
educatn	.1009005	.0219979	4.59	0.000	.0574834	.1443176
married	.4198385	.1545864	2.72	0.007	.1147326	.7249443
_cons	.6149712	.3219871	1.91	0.058	0205319	1.250474

regress lnhwage educatn married, vce(robust) noheader

Robison's estimator:

STATA command: semipar

 married enters linearly, we allow education to enter nonparametrically

semipar Inhwage married, nonpar(educatn) robust ci title("Partial linear")

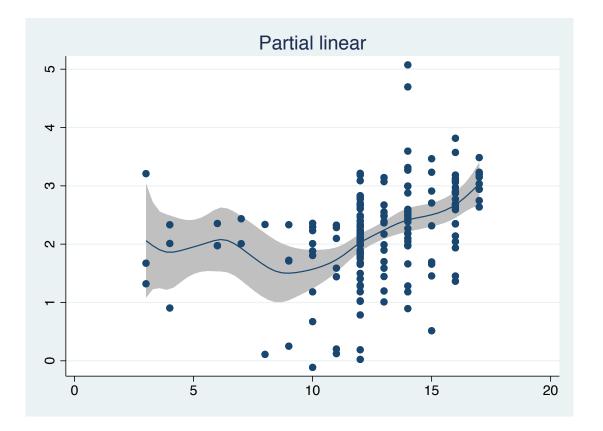
with robust standard errors, confidence intervals...

Output has two parts: 1) the parametric component

. semipar lnhwage married, nonpar(educat) robust ci title("Partial linear")

married	.357994	.146041	2.45	0.015	.069777	.646211
lnhwage	Coefficient	Std. err.	t	P> t	[95% conf. i	nterval]
					Number of obs = R-squared = Adj R-squared = Root MSE =	0.0442

 \blacksquare . . . and the non-parametric component: Plot of $\lambda(z)$ against z where z is education



Trimming

Trimming: we can apply trimming to estimate the nonparametric component.

In kernel estimation: estimates are not good in areas of the support of z with low density values

■ Why? low density=few values to compute the local average

Trimming consists of excluding data points for which the density f(z) < b, for some positive value b

the command semipar allows for the introduction of trimming (default is no trimming)

Summarizing

Partially linear model: additive model with a parametric part and a non-parametric one

- Estimation: Robinson's two step estimator
- Stata: semipar
- Advantages of this method:
- The model allows "any" form of the unknown
- $\hat{\beta} \text{ is } \sqrt{n} \text{-consistent}$

Single Index Models

Model:

$$E[y_i|x_i] = g(x_i'\beta)$$

where $g(\cdot)$ is not specified.

 Many standard nonlinear (parametric) models such as logit, probit, and Tobit are of single-index form. (In these cases g(.) is known)

But we can also estimate this model leaving g(.) unspecified and estimate it non-parametrically.

More on interpretation: marginal effects

■ For single-index models the effect on the conditional mean of a change in the *j*th regressor using calculus methods is

$$\frac{\partial E[y|x]}{\partial x_j} = g'(x'\beta)\beta_j,\tag{5}$$

where $g'(z) = \frac{\partial g(z)}{\partial z}$.

Then, relative effects of changes in regressors are given by the ratio of the coefficients since

$$\frac{\partial E[y|x]/\partial x_j}{\partial E[y|x]/\partial x_k} = \frac{\beta_j}{\beta_k},\tag{6}$$

because the common factor $g'(x'\beta)$ cancels.

Thus, if β_j is two times β_k , then a one-unit change in x_j has twice the effect as a one-unit change in x_k .

Estimation with unspecified g(.)

Identification: β can only be identified up to location and scale

That is, we estimate
$$a + b\beta_i$$

This is still useful to compute relative marginal effects!

Ichimura semiparametric least squares: choose β and $g(\cdot)$ that minimizes

$$\operatorname{argmin}_{\beta} \sum_{i=1}^{N} w(x_i) f(y_i - \hat{g}(x'_i\beta))^2,$$

where $\hat{g}(.)$ is the leave-one-out NW estimator and $w(\cdot)$ is a trimming function that drops outlying x values.

 β can only be estimated up to scale in this model,

but still useful as ratio of coefficients equals ratio of marginal effects in a single-index models.

Example

Same data as before. Now: wages on hours worked and education

■ STATA command: sls (Semiparametric Least Squares from Ichimura, 1993)

Install it first:

ssc install sls

Run both ols and sls and compare results

lnhwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
hours	.0001365	.0000839	1.63	0.106	0000292	.0003022
educatn	.1071543	.0206339	5.19	0.000	.0664293	.1478793
_cons	.6437424	.3068995	2.10	0.037	.0380175	1.249467

. sls lnhwage hours educatn, trim(1,99) initial: SSq(b) = 120.10723 alternative: SSq(b) = 120.1062 rescale: SSq(b) = 98.292016 SLS 0: SSq(b) = 98.292016 SLS 1: SSq(b) = 98.195246 SLS 2: SSq(b) = 98.007811 SLS 3: SSq(b) = 98.007526 SLS 4: SSq(b) = 98.007526 pilot bandwidth 1052.001873 SLS 0: SSq(b) = 99.252078 (not concave) SLS 1: SSq(b) = 97.285143 SLS 2: SSq(b) = 97.202952 SLS 3: SSq(b) = 97.201992 SLS 4: SSq(b) = 97.201988 Number of obs = 177 = .741056 root MSE

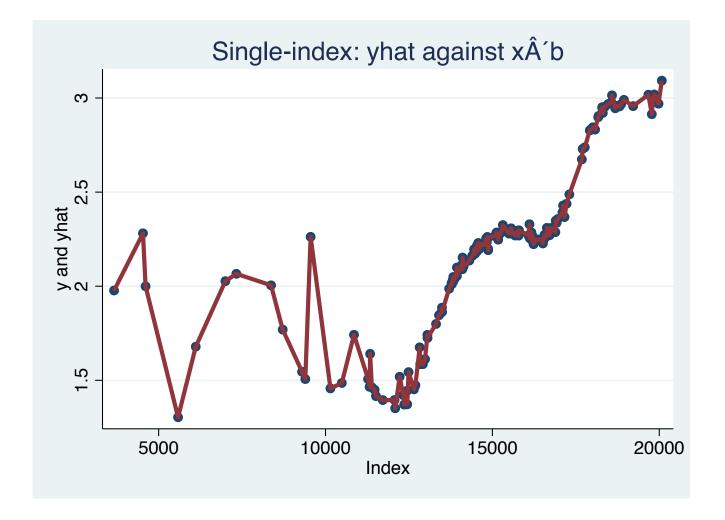
lnhwage	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
Index educatn hours		275.9987 (offset)	3.80	0.000	507.1545	1589.05

Interpretation:

one more year of education has the same effect on log hourly wage as working 1048 more hours a year!

Compared to OLS, 0.1071453/0.0001365 = 785.

This graph plots the predicted conditional expectation versus $x'\beta$ (highly nonlinear)



Index models, summary

■ Generalizes the linear regression model (which assumes g(.) constant)

Gain over parametric models: more flexible

Gain over fully non-parametric: only one nonparametric dimension (avoid curse of dimensionality).

We only identified the parameters up to location and scale but

The ratio of the coefficients provides the relative marginal effects

Takeaway

Semiparametric methods aim to overcome some of the limitations of fully parametric and fully nonparametric methods

- Flexible, yet tractable (many variables can be included)
- Literature is very large
- Here, we've only presented a short introduction.
- Partial linear model, single index models ... but many more models are available
- See this document to learn about other semiparametric methods STATA can handle