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1. Introduction

Previous handouts: regression models without any structure.

This gives a lot of flexibility but it also has some limitations :

Sometimes, theory may place some structure on the data. We
might want to incorporate this information in the model

We can only include in the analysis a relative small set of vari-
ables (curse of dimensionality)

...but incorporating many variables might be needed to avoid
endogeneity of regressors

This lecture: Semiparametric methods
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Semiparametric models: examples (from Cameron&Trivedi)

Many semiparametric models and many methods to estimate
them. This is only a short intro to these methods.
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Roadmap

1. Partially Linear Models

2. Single Index Models

3. Summary, other models exist . . .
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Partially Linear Model
Partially Linear Model: conditional mean is a linear regression

function plus an unspecified nonlinear component.

E[y|x, z] = xβ + λ(z) λ(.) unspecified.

Model to be estimated:

y = xβ + λ(z) + u, E(u|x, z) = 0. (1)

Estimation Method: Robinson Difference Estimator

We will obtain estimates for β and for λ in two steps

Step 1: get rid of λ(z) and estimate β (only)

Step 2: Use the estimates of β in a model that will allow us to
obtain an estimate for λ(.)
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Robinson Difference Estimator

Step 1: A) get rid of λ(.), B) estimate β

A) get rid of lambda:

Take conditional expectations (by z) on both sides of Model
1 (and notice that E(u|z) = 0):

E[y|z] = E[x|z]′β + λ(z) (2)

Subtract the two equations –eq (1) and eq (2)– and obtain
the model:

y−E[y|z] = (x−E[x|z])′β + u (3)

The conditional moments E[y|z] and E[x|z] are unknown ⇒
Replace them by non parametric estimators m̂yi and m̂xi
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Robinson’s difference estimator:

Step 1: B) estimate β in the model

y− m̂yi = (x− m̂xi)
′β + u (4)

The resulting estimator of β is consistent and A.N (assuming
u is i.i.d.):

√
N(β̂PL − β)

d→ N(0,σ2
(

plim 1
N

N∑
i=1

(xi −E[xi|zi])(xi −E(xi|zi)′
)−1

Notes:

1. Cost of non-specifying λ? higher variance (efficiency loss) [But
no loss if E(x—z) is linear!]

2. The distribution assumes homokedasticity (u is i.i.d). Use
Eicker-White standard errors to make it robust to heteroskedas-
ticity
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Notes (cont).:

3. To estimate the variance: replace (xi −E[xi|zi]) by (xi − m̂xi)

4. How to compute m̂xi and m̂yi?

Robinson: Kernel estimates with convergence no slower than
N−1/4.

Step 2: Estimate λ

Recall that λ(z) = E(y|z)−E(x|z)′β.

Estimate λ(z) as

λ̂(z) = m̂yi − m̂′xiβ
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Summarizing: Robinson difference estimator

Model: E[yi|xi, zi] = x′iβ + λ(zi), unspeficied λ(·)

Steps:

1. Kernel regress y on z and get residual y− ŷ.

2. Kernel regress x on z and get residual x− x̂.

3. OLS regress y− ŷ on x− x̂, get β̂

4. Combine the estimates in 1) 2) and 3) to get λ̂(z) = m̂yi − m̂′xi β̂
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An example
Same data as before: now, wage on marital status and educa-

tion.

Let’s look first at the OLS:
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Robison’s estimator:

STATA command: semipar

married enters linearly, we allow education to enter nonpara-
metrically

semipar lnhwage married, nonpar(educatn) robust ci title(”Partial
linear”)

with robust standard errors, confidence intervals...

Output has two parts: 1) the parametric component
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. . . and the non-parametric component: Plot of λ(z) against z
where z is education
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Trimming

Trimming: we can apply trimming to estimate the nonpara-
metric component.

In kernel estimation: estimates are not good in areas of the
support of z with low density values

Why? low density=few values to compute the local average

Trimming consists of excluding data points for which the density
f (z) < b, for some positive value b

the command semipar allows for the introduction of trimming
(default is no trimming)
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Summarizing

Partially linear model: additive model with a parametric part
and a non-parametric one

Estimation: Robinson’s two step estimator

Stata: semipar

Advantages of this method:

The model allows ”any” form of the unknown

β̂ is
√
n-consistent
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Single Index Models

Model:
E[yi|xi] = g(x′iβ)

where g(·) is not specified.

Many standard nonlinear (parametric) models such as logit,
probit, and Tobit are of single-index form. (In these cases g(.) is
known)

But we can also estimate this model leaving g(.) unspecified
and estimate it non-parametrically.
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More on interpretation: marginal effects

For single-index models the effect on the conditional mean of
a change in the jth regressor using calculus methods is

∂E[y|x]
∂xj

= g′(x′β)βj , (5)

where g′(z) =
∂g(z)
∂z

.

Then, relative effects of changes in regressors are given by the
ratio of the coefficients since

∂E[y|x]/∂xj
∂E[y|x]/∂xk

=
βj

βk
, (6)

because the common factor g′(x′β) cancels.

Thus, if βj is two times βk, then a one-unit change in xj has
twice the effect as a one-unit change in xk.
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Estimation with unspecified g(.)

Identification: β can only be identified up to location and scale

That is, we estimate a+ bβi

This is still useful to compute relative marginal effects!

Ichimura semiparametric least squares: choose β and g(·) that
minimizes

argminβ

N∑
i=1

w(xi)f (yi − ĝ(x′iβ))
2,

where ĝ(.) is the leave-one-out NW estimator and w(·) is a trimming
function that drops outlying x values.

β can only be estimated up to scale in this model,

but still useful as ratio of coefficients equals ratio of marginal
effects in a single-index models.
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Example

Same data as before. Now: wages on hours worked and edu-
cation

STATA command: sls (Semiparametric Least Squares from
Ichimura, 1993)

Install it first:

ssc install sls

Run both ols and sls and compare results
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Interpretation:

one more year of education has the same effect on log hourly
wage as working 1048 more hours a year!

Compared to OLS, 0.1071453/0.0001365 = 785.
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This graph plots the predicted conditional expectation versus
x′β (highly nonlinear)
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Index models, summary

Generalizes the linear regression model (which assumes g(.)
constant)

Gain over parametric models: more flexible

Gain over fully non-parametric: only one nonparametric dimen-
sion (avoid curse of dimensionality).

We only identified the parameters up to location and scale but

The ratio of the coefficients provides the relative marginal ef-
fects
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Takeaway
Semiparametric methods aim to overcome some of the limita-

tions of fully parametric and fully nonparametric methods

Flexible, yet tractable (many variables can be included)

Literature is very large

Here, we’ve only presented a short introduction.

Partial linear model, single index models . . . but many more
models are available

See this document to learn about other semiparametric meth-
ods STATA can handle
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https://www.stata.com/meeting/uk13/abstracts/materials/uk13_verardi.pdf

