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1. Introduction
Previous handout: nonparametric Kernel regression.

Several methods: local constant, local linear, Lowess, K-NN,
etc.

Recall these are local average methods, (i.e., averages of the
dependent variable) where the weights employed are Kernel weights.

Now: a new class of nonparametric regression methods: non-
parametric series regression.

Goal: Same as before, estimate the conditional expectation.
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Series Regression
Model: Consider two random variables (y,x) who are related

by,

y = m(x) + e (1)

where E[e|x] = 0 and E[e2|x] = σ2(x).

Goal: estimate m(.), unspecified

Idea: approximate m(x) by a flexible function.

We focus on linear functions (other possibilities also exist but
linear functions are simple and work well)

In particular

polynomials

splines

0-2



Series Regression, II
Linear series regression models take the form

y = X ′KβK + eK (2)

where XK is a vector of regressors obtained by transforming x
in different ways

βK is a coefficient vector.

We examine next two popular series regression estimators

Polynomials

Splines
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Polynomial Regression
Conditional expectation:

approximated by a polynomial in x of degree p:

mK(x) = β0 + β1x+ β2x
2 + · · ·+ βpx

p

.

number of parameters to be estimated is K = p+ 1

Simple approach: estimate bk by OLS

p: controls the degree of flexibility of a polynomial regression.
Tradeoff

A large p provides a lot of flexibility

But it can become too noisy
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Example
(from Hansen’s book, chapter 20)

Log wages on experience for women with college education
(education= 16), separately for white women and Black women
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Difference between the two plots: might be due to the fact
that the sub-sample of Black women has much fewer observations

Then, the mean function is much less precisely estimated, giv-
ing rise to the erratic plots
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Orthogonal polynomials

The different regressors (x1,x2, . . . ,xj . . . ) can be highly corre-
lated

Then the OLS estimator can be difficult to compute (as it
needs to invert a near-singular matrix)

One solution: orthogonalize the polinomial.

Goal of orthogonal polynomials: get rid of the problem of the
inversion of X ′kXk

How they work: they produce regressors that are close to being
orthogonal and have similar variances, which implies that the re-
sulting matrix of orthogonal regressors X∗k

′X∗k is diagonal and with
similar diagonal values (the variances).

Then, use this vector of orthogonal regressors rather than Xk.
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There exist different ways of doing these orthogalizations, for
instance: 1) sample orthogonalization and) use orthogonal poly-
nomials

The most popular orthogonal polynomials are:

Hermite polynomial, Laguerre Polynomial etc.

(See Hansen, chapter 20 for further details)
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Implementation in STATA: npregress series

From STATA help:

npregress series: performs nonparametric series estimation

Like linear regression, nonparametric regression models the mean
of the outcome conditional on the covariates, but unlike linear re-
gression, it makes no assumptions about the functional form of the
relationship between the outcome and the covariates.

Output: average marginal effect
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log wages on years of education.

stata command: npregress series lnhwage educatn, polynomial

Output: average effect

Polynomial order: chosen by cross-validation
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Different output if regressor is continuous or discrete. Edu-
cation has 14 different values. Now we enter it in the model as
discrete

npregress series lnhwage i.educatn, polynomial
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Estimated function at different data points

npregress series lnhwage educatn, polynomial margins, at(educatn=(4
5 6 7 8 9 10 11 12 13 14 15 16 17)) marginsplot)
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Splines
A spline is a piecewise polynomial.

Order of polynomial: pre-selected to be linear, quadratic, or
cubic.

The flexibility of the model: determined by the number of poly-
nomial segments.

The join points between the segments are called knots.

If there’s 1 knot, there are two segments, etc.
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Splines, II
How to construct a spline?

Choose p (order of the polynomial), typically p=1, 2 or 3

A quadratic or cubic spline is useful when it is desired to
impose smoothness

a linear spline is useful when it is desired to allow for sharp
changes in slope.

Choose number of knots
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Examples

Example 1: a linear spline with one knot τ :

(we allow the slope to change once)

mK(x) = β0 + β1x+ β2(x− τ )1(x≥τ )

Notice that;

for x < τ , mK(x) = β0 + β1x is linear with slope β1;

for x ≥ τ , mK(x) is linear with slope β1 + β2; and the function
is continuous at x = τ .

β2 is the change in the slope at τ .
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Example 2: A linear spline with two knots τ1 < τ2 :

(The knots allow the slope to change twice)

mK(x) = β0 + β1x+ β2(x− τ1)1(x ≥ τ1) + β3(x− τ2)1(x ≥ τ2)

.

Example 3: quadratic spline with one knot is (we allow the
coefficient of x2 to change once)

mK(x) = β0 + β1x+ β2x
2 + β3(x− τ )2 · 1(x ≥ τ )

In general, a pth-order spline with N knots τ1 < τ2 < · · · < τN is

mK(x) =
N+p−1∑
j=0

βjx
j +

N∑
k=1

βp+k(x− τk)p · 1x ≥ τk
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Important: select the number and location of knots.

As usual, many options for doing this

Simplest: evenly spaced
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Example 1 (Hansen, Chapter 20)
Graph plots log wages on experience for Black women (394

obs.)

quadratic spline (smooth changes)

four equally-spaced knots at experience levels of 10, 20, 30,
and 40 (7 coefficients)

For comparison: 6th order polynomial regression (also 7 coef-
ficients).
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Interpretation example 1:

the spline is a quadratic over each segment, but the first two
segments (experience levels between 0-10 and 10-20 years) are
essentially linear.

Most of the curvature occurs in the third and fourth segments
(20-30 and 30-40 years) where the estimated regression function
peaks and twists into a negative slope.

The estimated regression function is smooth.
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Example 2 (Hansen, Chapter 20)
A model of altruistic transfers: transfers of extended family.

vs. income family.

Model predicts that extended families will make gifts (trans-
fers) when the recipient family’s income is low, but will not make
transfers if the recipient family’s income exceeds a threshold.

A pure altruistic model predicts that the regression of transfers
received on family income should have a slope of 1 up to this
threshold and be flat above this threshold.

(sharp changes)

linear spline with knots at 10000, 20000, 50000, 100000, and
150000 pesos.
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Splines in STATA
npregress series lnhwage educatn, spline

Note: unless specified otherwise, cubic spline and number of knots
chosen by cross validation

In this example: cubic spline, 3 knots...how many parameters?
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Conditional expectation at different points

margins, at(educatn=(4 5 6 7 8 9 10 11 12 13 14 15 16 17))
marginsplot
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Restrict to linear or quadratic spline to see the difference

(in both cases, 1 knot selected by CV)
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Asymptotic properties

Consistent (if K,N →∞)

Asymptotically normal

Rate of convergence is
√
N

But finite-samples biases still exist (the C.I. is not centered
correctly centered), similar case as in Kernel regression!

the bias term can be made asymptotically negligible if we as-
sume that

Kincreaseswith

Natasufficientlyfastrate.
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The Global/Local Nature of Series Regression

Kernel regression as inherently local in nature.

The Nadaraya-Watson, Local Linear, and Local Polynomial es-
timators estimate m(x0) only considering x’s close to x0.

In contrast, series regression is typically described as global in
nature: estimators are a function of the whole sample

However, series regression estimators share the local smoothing
property of kernel regression:

As the number of series terms K increase a series estimator also
becomes a local weighted average estimator.
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Thus, another interpretation

Both are global in nature when h is large (kernels) or K is
small (series), and

. . . are local in nature when h is small (kernels) or K is large
(series).

See Hansen, Chapter 20, for additional details
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Takeaway

Two different ways of doing nonparametric regression

Local averages

This handout: Flexible functions of the regressors:

Splines

Polynomials

Very easy to implement, quicker rate of convergence
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Additional References

In case you are interested on this topic, you can check the following
references:

For a textbook treatment of series regression: see Li and
Racine (2007).

For an advanced treatment see Chen (2007).

Two seminal contributions are Andrews (1991a) and Newey
(1997).

Recent contributions: Belloni, Chernozhukov, Chetverikov, and
Kato (2015) and Chen and Christensen (2015).

0-30


